Skip to main content
Log in

Hydrolytic and thermal oxidative degradation behavior of thermotropic aromatic–aliphatic copolyesters

Containing d,l-lactic acid (LA) and butylene terephthalate (BT) units

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the hydrolytic and thermal oxidative degradation behavior of thermotropic aromatic–aliphatic copolyesters based on 4-hydroxybenzoic acid (HBA), 4-hydroxy-3-methoxybenzoic acid (VA), poly(butylene terephthalate) (PBT) and lactic acid (LA) have been investigated. The hydrophilicity and alkaline hydrolytic degradation rate of copolyesters increased with increasing LA contents. FTIR, DSC and TG results suggested that breakage of molecular chain mainly took place on aliphatic segments and also amorphous part. SEM analysis indicated the hydrolytic degradation followed surface corrosion mechanism. The dynamic TG results showed that all copolyesters exhibit total mass loss and two degradation stages under air atmosphere. The thermal oxidative degradation kinetics were evaluated by Kissinger and KAS method. The dependence of E values on conversion α has been observed in selected conversion range for all copolyesters, indicating complex degradation reaction existed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules. 2011;12(3):523–32.

    Article  CAS  Google Scholar 

  2. Abebe DG, Kandil R, Kraus T, Elsayed M, Merkel OM, Fujiwara T. Three-layered biodegradable micelles prepared by two-step self-assembly of PLA–PEI–PLA and PLA–PEG–PLA triblock copolymers as efficient gene delivery system. Macromol Biosci. 2015;15(5):698–711.

    Article  CAS  Google Scholar 

  3. Tabata Y, Abe H. Synthesis and properties of alternating copolymers of 3-hydroxybutyrate and lactate units with different stereocompositions. Macromolecules. 2014;47(21):7354–61.

    Article  CAS  Google Scholar 

  4. Che H-L, Lee HJ, Uto K, Ebara M, Kim WJ, Aoyagi T, et al. Simultaneous drug and gene delivery from the biodegradable poly(-caprolactone) nanofibers for the treatment of liver cancer. J Nanosci Nanotechnol. 2015;15(10):7971–5.

    Article  CAS  Google Scholar 

  5. Yu H, Yan C, Yao J. Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv. 2014;4(104):59792–802.

    Article  CAS  Google Scholar 

  6. Felfel RM, Leander P, Miquel G-F, Tobias M, Gerhard H, Ifty A, et al. In vitro degradation and mechanical properties of PLA–PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater. 2016;11(1):015011.

    Article  CAS  Google Scholar 

  7. Ortega-Toro R, Contreras J, Talens P, Chiralt A. Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packag Shelf Life. 2015;5:10–20.

    Article  Google Scholar 

  8. Lavilla C, Alla A, Martínez de Ilarduya A, Benito E, García-Martín MG, Galbis JA, et al. Bio-based poly(butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: influence of composition on properties. Polymer. 2012;53(16):3432–45.

    Article  CAS  Google Scholar 

  9. Montes de Oca H, Wilson JE, Penrose A, Langton DM, Dagger AC, Anderson M, et al. Liquid-crystalline aromatic–aliphatic copolyester bioresorbable polymers. Biomaterials. 2010;31(30):7599–605.

    Article  CAS  Google Scholar 

  10. Du J, Fang Y, Zheng Y. Synthesis, characterization and biodegradation of biodegradable-cum-photoactive liquid-crystalline copolyesters derived from ferulic acid. Polymer. 2007;48(19):5541–7.

    Article  CAS  Google Scholar 

  11. Chen Y, Wombacher R, Wendorff JH, Visjager J, Smith P, Greiner A. Design, synthesis, and properties of new biodegradable aromatic/aliphatic liquid crystalline copolyesters. Biomacromolecules. 2003;4(4):974–80.

    Article  CAS  Google Scholar 

  12. Prasad VS, Pillai CKS. Synthesis, characterization, and in vitro degradation of liquid-crystalline terpolyesters of 4-hydroxyphenylacetic acid/3-(4-hydroxyphenyl)propionic acid with terephthalic acid and 2,6-naphthalene diol. J Polym Sci Part A Polym Chem. 2002;40(11):1845–57.

    Article  CAS  Google Scholar 

  13. Wei P, Wang L, Huang S, Wang X, Chen Y, Wang Y, et al. Synthesis and characterization of novel thermotropic aromatic–aliphatic biodegradable copolyesters containing d,l-lactic acid (LA), poly(butylene terephthalate) (PBT) and biomesogenic units. Polym Plast Technol Eng. 2014;53(16):1697–705.

    Article  CAS  Google Scholar 

  14. Chao G, Fan L, Jia W, Qian Z, Gu Y, Liu C, et al. Synthesis, characterization and hydrolytic degradation of degradable poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) copolymers. J Mater Sci Mater Med. 2007;18(3):449–55.

    Article  CAS  Google Scholar 

  15. Kullyakool S, Danvirutai C, Siriwong K, Noisong P. Determination of kinetic triplet of the synthesized Ni3(PO4)2·8H2O by non-isothermal and isothermal kinetic methods. J Therm Anal Calorim. 2014;115(2):1497–507.

    Article  CAS  Google Scholar 

  16. Wei P, Wang L, Wang X, Chen Y, Wang Y, Wang Y. Nonisothermal and isothermal oxidative degradation behavior of thermotropic liquid crystal polyesters containing kinked bisphenol AF and bisphenol A units. High Perform Polym. 2014;26(8):935–45.

    Article  CAS  Google Scholar 

  17. Wei P, Cakmak M, Chen Y, Wang X, Wang Y, Wang Y. The influence of bisphenol AF unit on thermal behavior of thermotropic liquid crystal copolyesters. Thermochim Acta. 2014;586:45–51.

    Article  CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  20. Sunose T, Akahira T. Method of determining activation deterioration constant of electrical insulating materials. Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  21. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  22. Chen Y, Tan L, Zhou W, Su J, Yang Y, Hu Y. Synthesis and structure of biodegradable hexylene terephthalate-co-lactide copolyesters. J Therm Anal Calorim. 2009;96(1):307–13.

    Article  CAS  Google Scholar 

  23. Koo G-H, Jang J. Surface modification of poly(lactic acid) by UV/Ozone irradiation. Fibers Polym. 2009;9(6):674–8.

    Article  Google Scholar 

  24. Wang X, Xia Y, Wei P, Chen Y, Wang Y, Wang Y. Nanocomposites of poly(propylene carbonate) reinforced with cellulose nanocrystals via sol-gel process. J Appl Polym Sci. 2014. doi:10.1002/app.40832.

    Google Scholar 

  25. Nagata M, Nakae M. Synthesis, characterization, and in vitro degradation of thermotropic polyesters and copolyesters based on terephthalic acid, 3-(4-hydroxyphenyl)propionic acid, and glycols. J Polym Sci Part A Polym Chem. 2001;39(18):3043–51.

    Article  CAS  Google Scholar 

  26. Kricheldorf HR, Stukenbrock T. New polymer syntheses, 92. Biodegradable, thermotropic copolyesters derived from β-(4-hydroxyphenyl)propionic acid. Macromol. Chem Phys. 1997;198(11):3753–67.

    CAS  Google Scholar 

  27. Kijchavengkul T, Auras R, Rubino M, Alvarado E, Camacho Montero JR, Rosales JM. Atmospheric and soil degradation of aliphatic–aromatic polyester films. Polym Degrad Stab. 2010;95(2):99–107.

    Article  CAS  Google Scholar 

  28. Bikiaris DN, Papageorgiou GZ, Achilias DS. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym Degrad Stab. 2006;91(1):31–43.

    Article  CAS  Google Scholar 

  29. Tsuji H, Suzuyoshi K. Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(l-lactide) films in controlled static seawater. Polym Degrad Stab. 2002;75(2):347–55.

    Article  CAS  Google Scholar 

  30. Chen Y, Jia Z, Schaper A, Kristiansen M, Smith P, Wombacher R, et al. Hydrolytic and enzymatic degradation of liquid-crystalline aromatic/aliphatic copolyesters. Biomacromolecules. 2003;5(1):11–6.

    Article  Google Scholar 

  31. Sato H, Kikuchi T, Koide N, Furuya K. Thermal degradation and combustion process of liquid crystalline polyesters studied by directly coupled thermal analysis-mass spectrometry. J Anal Appl Pyrolysis. 1996;37(2):173–83.

    Article  Google Scholar 

  32. Acar I, Pozan GS, Özgümüş S. Thermal oxidative degradation kinetics and thermal properties of poly(ethylene terephthalate) modified with poly(lactic acid). J Appl Polym Sci. 2008;109(5):2747–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Wang, Y., Xia, Y. et al. Hydrolytic and thermal oxidative degradation behavior of thermotropic aromatic–aliphatic copolyesters. J Therm Anal Calorim 128, 1067–1076 (2017). https://doi.org/10.1007/s10973-016-5975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5975-8

Keywords

Navigation