Skip to main content

Advertisement

Log in

Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The hydroxyapatite/collagen (HAp/Col) sponge with 95% (v/v) porosity was prepared by freeze-drying of a HAp/Col fiber suspension. MG63 cells were seeded onto the HAp/Col sponge and cultured under a pressure/perfusion condition with osteogenic supplements. A collagen (Col) sponge was used as a control. The cells with sponge were examined by a histology, total DNA content and gene expression. The cells showed good attachment and proliferation everywhere in the HAp/Col sponge, while the cells mainly proliferated at the peripheral part of the Col sponge. Thus, total DNA content in the HAp/Col sponges reached 1.8 times greater than that in the Col sponges at Day 21. Further, the cells and extracellular matrix only in the HAp/Col sponge were calcified, although the cells in both sponge evenly expressed osteogenic gene. These results suggest that the HAp/Col sponge could be useful as a scaffold for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cornell CN, Lane JM. Current understanding of osteoconduction in bone regeneration. Clin Orthop Relat Res. 1998;355:S267–73.

    Article  PubMed  Google Scholar 

  2. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, et al. Preparation and characterization of poly (l-lactic acid) foams. Polymer. 1994;35:1068–77.

    Article  CAS  Google Scholar 

  3. Quirk RA, Davies MC, Tendler SJB, Shakesheff KM. Surface engineering of poly (lactic acid) by entrapment of modifying species. Macromolecules. 2000;33:158–260.

    Article  Google Scholar 

  4. Ma PX, Langer R. Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering. In: Mikos AG, et al., editors. Polymers in medicine and pharmacy. Pittsburgh: MRS; 1995. p. 99–104.

    Google Scholar 

  5. Shea LD, Wang D, Franceschi RT, Mooney DJ. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng. 2000;6:605–17.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein AS, Zhu G, Morris GE, Meszlenyi RK, Mikos AG. Effect of osteoblastic culture conditions on the structure of poly (dl-lactic-co-glycolic acid) foam scaffolds. Tissue Eng. 1999;5:421–34.

    Article  CAS  PubMed  Google Scholar 

  7. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials. 1998;19:1405–12.

    Article  CAS  PubMed  Google Scholar 

  8. Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials. 2001;22:1279–88.

    Article  CAS  PubMed  Google Scholar 

  9. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res. 1997;36:17–28.

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Li Y, Zuo Y, Li L, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338–48.

    Article  CAS  PubMed  Google Scholar 

  11. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28:5291–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ignjatović N, Tomić S, Dakić M, Miljković M, Plavsić M, Uskoković D. Synthesis and properties of hydroxyapatite/poly-l-lactide composite biomaterials. Biomaterials. 1999;20:809–16.

    Article  PubMed  Google Scholar 

  13. Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials. 1994;15:1209–13.

    Article  CAS  PubMed  Google Scholar 

  14. Rovira A, Amedee J, Bareilleand R, Rabaud M. Colonization of a calcium phosphate/elastin-solubilized peptide-collagen composite material by human osteoblasts. Biomaterials. 1996;17:1535–40.

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML, et al. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials. 2004;25:3681–8.

    Article  CAS  PubMed  Google Scholar 

  16. Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res. 1999;44:407–15.

    Article  CAS  PubMed  Google Scholar 

  17. Wu TJ, Huang HH, Lan CW, Lin CH, Hsu FY, Wang YJ. Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials. 2004;25:651–8.

    Article  CAS  PubMed  Google Scholar 

  18. Clarke KI, Graves SE, Wong ATC, Triffitt JT, Francis MJO, Czernuszka JT. Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate. J Mater Sci Mater Med. 1993;4:107–10.

    Article  CAS  Google Scholar 

  19. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001;22:1705–11.

    Article  CAS  PubMed  Google Scholar 

  20. Kikuchi M, Ikoma T, Syoji D, Matsumoto HN, Koyama Y, Itoh S, et al. Porous body preparation of hydroxyapatite/collagen nanocomposites for bone tissue regeneration. Key Eng Mater. 2004;254:561–4.

    Article  Google Scholar 

  21. Cartmell SH, Porter BD, Garcia AJ, Guldberg RE. Effect of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 2003;9(6):1197–203.

    Article  CAS  PubMed  Google Scholar 

  22. Glowacki J, Mizuno S. Greenberger JS: perfusion enhances functions of bone marrow stromal cells in three-dimensional culture. Cell Transplant. 1998;7(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  23. Muller SM, Mizuno S, Gerstendfeld LC, Glowacki J. Medium perfusion enhances osteogenesis by murine osteosarcoma cells in three-dimensional collagen sponge. J Bone Min Res. 1999;14:2118–26.

    Article  Google Scholar 

  24. Mizuno S, Tateishi T, Ushida T, Glowacki J. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Phsy. 2002;193:319–27.

    Article  CAS  Google Scholar 

  25. Kikuchi M, Kikuchi K, Johnson K, Glowacki J. Hydrostatic fluid pressure stimulates osteogenesis by MG63 cells in porous collagen sponge. J Oromaxillo facial Biomech. 2004;10(1):57–60.

    Google Scholar 

  26. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, et al. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng. 2004;32(1):112–22.

    Article  PubMed  Google Scholar 

  27. Applied Biosystems (2001) Applied biosystems user bulletin number 2, Foster City, CA [Kikuchi M, Kikuchi K, Johnson K, Glowacki J. Hydrostatic fluid pressure stimulates osteogenesis by MG63 cells in porous collagen sponge. J Oromaxillo Facial Biomech 2004;10(1):57–60] Ritter SK. Boning up. Chem Eng News 1997;75:27–32.

    Google Scholar 

  28. Salgada AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    Article  Google Scholar 

  29. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  30. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.

    Article  CAS  Google Scholar 

  31. Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condo SG. Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomol Eng. 2002;19(2–6):119–24.

    Article  CAS  PubMed  Google Scholar 

  32. Matsushima A, Kotobuki N, Tadokoro M, Ohgushi H. Comparative study of ceramics structure for culturing human mesenchymal stromal cells. Key Eng Mater. 2008;361–3:1067–70.

    Article  Google Scholar 

  33. Yang XB, Roach HI, Clarke NMP, Howdle SM, Quirk R, Shakesheff KM, et al. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone. 2001;29:523–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, T., Kikuchi, M., Koyama, Y. et al. Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges. J Mater Sci: Mater Med 21, 1263–1272 (2010). https://doi.org/10.1007/s10856-009-3938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3938-3

Keywords

Navigation