Skip to main content

Advertisement

Log in

Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate and compare the biocompatibility of computer-assisted designed (CAD) synthetic hydroxyapatite (HA) and tricalciumphosphate (TCP) blocks and natural bovine hydroxyapatite blocks for augmentations and endocultivation by supporting and promoting the proliferation of human periosteal cells. Human periosteum cells were cultured using an osteogenic medium consisting of Dulbecco’s modified Eagle medium supplemented with fetal calf serum, Penicillin, Streptomycin and ascorbic acid at 37°C with 5% CO2. Three scaffolds were tested: 3D-printed HA, 3D-printed TCP and bovine HA. Cell vitality was assessed by Fluorescein Diacetate (FDA) and Propidium Iodide (PI) staining, biocompatibility with LDH, MTT, WST and BrdU tests, and scanning electron microscopy. Data were analyzed with ANOVAs. Results: After 24 h all samples showed viable periosteal cells, mixed with some dead cells for the bovine HA group and very few dead cells for the printed HA and TCP groups. The biocompatibility tests revealed that proliferation on all scaffolds after treatment with eluate was sometimes even higher than controls. Scanning electron microscopy showed that periosteal cells formed layers covering the surfaces of all scaffolds 7 days after seeding. Conclusion: It can be concluded from our data that the tested materials are biocompatible for periosteal cells and thus can be used as scaffolds to augment bone using tissue engineering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J. Surface- and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Investig. 2009;13:149–55.

    Article  CAS  PubMed  Google Scholar 

  2. Turhani D, Weissenbock M, Stein E, Wanschitz F, Ewers R. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg. 2007;65:485–93.

    Article  PubMed  Google Scholar 

  3. Warnke PH, Springer IN, Acil Y, Julga G, Wiltfang J, Ludwig K, et al. The mechanical integrity of in vivo engineered heterotopic bone. Biomaterials. 2006;27:1081–7.

    Article  CAS  PubMed  Google Scholar 

  4. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmoller M, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70.

    Article  CAS  PubMed  Google Scholar 

  5. Arnold U, Lindenhayn K, Perka C. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites. Biomaterials. 2002;23:2303–10.

    Article  CAS  PubMed  Google Scholar 

  6. Cai S, Xu GH, Yu XZ, Zhang WJ, Xiao ZY, Yao KD. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. J Mater Sci Mater Med. 2009;20:351–8.

    Article  CAS  PubMed  Google Scholar 

  7. Gbureck U, Holzel T, Biermann I, Barralet JE, Grover LM. Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J Mater Sci Mater Med. 2008;19:1559–63.

    Article  CAS  PubMed  Google Scholar 

  8. Szabo G, Huys L, Coulthard P, Maiorana C, Garagiola U, Barabas J, et al. A prospective multicenter randomized clinical trial of autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevation: histologic and histomorphometric evaluation. Int J Oral Maxillofac Implants. 2005;20:371–81.

    PubMed  Google Scholar 

  9. Janssen FW, Oostra J, Oorschot A, van Blitterswijk CA. A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: in vivo bone formation showing proof of concept. Biomaterials. 2006;27:315–23.

    Article  CAS  PubMed  Google Scholar 

  10. Alexander D, Hoffmann J, Munz A, Friedrich B, Geis-Gerstorfer J, Reinert S. Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells. J Mater Sci Mater Med. 2008;19:965–74.

    Article  CAS  PubMed  Google Scholar 

  11. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. Eur J Trauma. 2006;32:114–24.

    Article  Google Scholar 

  12. Li M, Amizuka N, Oda K, Tokunaga K, Ito T, Takeuchi K, et al. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis. Microsc Res Tech. 2004;64:330–42.

    Article  PubMed  Google Scholar 

  13. Warnke PH, Douglas T, Sivananthan S, Wiltfang J, Springer I, Becker ST. Tissue engineering of periosteal cell membranes in vitro. Clin Oral Implants Res. 2009;20:761–6.

    Article  PubMed  Google Scholar 

  14. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  15. Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng. 2003;9(Suppl 1):S45–64.

    Article  CAS  PubMed  Google Scholar 

  16. Ueno T, Sakata Y, Hirata A, Kagawa T, Kanou M, Shirasu N, et al. The evaluation of bone formation of the whole-tissue periosteum transplantation in combination with beta-tricalcium phosphate (TCP). Ann Plast Surg. 2007;59:707–12.

    Article  CAS  PubMed  Google Scholar 

  17. Agata H, Asahina I, Yamazaki Y, Uchida M, Shinohara Y, Honda MJ, et al. Effective bone engineering with periosteum-derived cells. J Dent Res. 2007;86:79–83.

    Article  CAS  PubMed  Google Scholar 

  18. Vogelin E, Jones NF, Huang JI, Brekke JH, Lieberman JR. Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J Bone Joint Surg Am. 2005;87:1323–31.

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi O, Katsube Y, Hirose M, Ohgushi H, Ito H. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum. and adipose tissue. Calcif Tissue Int. 2008;82:238–47.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Awad HA, O'Keefe RJ, Guldberg RE, Schwarz EM. A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res. 2008;466:1777–87.

    Article  PubMed  Google Scholar 

  21. Breitbart AS, Grande DA, Kessler R, Ryaby JT, Fitzsimmons RJ, Grant RT. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg. 1998;101:567–74.

    Article  CAS  PubMed  Google Scholar 

  22. Sachs E, Cima M, Williams P, Brancazio D, Cornie J. Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Eng Ind. 1992;114:481–8.

    Article  Google Scholar 

  23. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74:782–8.

    PubMed  Google Scholar 

  24. Seitz H, Deisinger U, Leukers B, Detsch R, Ziegler G. Different calcium phosphate granules for 3D printing of bone tissue engineering scaffolds. Adv Eng Mater. 2009. Accepted for publication.

  25. Yang B, Ludwig K, Adelung R, Kern M. Micro-tensile bond strength of three luting resins to human regional dentin. Dent Mater. 2006;22:45–56.

    Article  PubMed  CAS  Google Scholar 

  26. Ng AM, Tan KK, Phang MY, Aziyati O, Tan GH, Isa MR, et al. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res A. 2008;85:301–12.

    PubMed  Google Scholar 

  27. Detsch R, Uhl F, Deisinger U, Ziegler G. 3D-cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J Mater Sci Mater Med. 2008;19:1491–6.

    Article  CAS  PubMed  Google Scholar 

  28. Acil Y, Terheyden H, Dunsche A, Fleiner B, Jepsen S. Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. J Biomed Mater Res. 2000;51:703–10.

    Article  CAS  PubMed  Google Scholar 

  29. Chen WJ, Jingushi S, Jingushi K, Iwamoto Y. In vivo banking for vascularized autograft bone by intramuscular inoculation of recombinant human bone morphogenetic protein-2 and beta-tricalcium phosphate. J Orthop Sci. 2006;11:283–8.

    Article  CAS  PubMed  Google Scholar 

  30. Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, et al. Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials. 2006;27:3163–7.

    Article  CAS  PubMed  Google Scholar 

  31. Fujita R, Yokoyama A, Kawasaki T, Kohgo T. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. J Oral Maxillofac Surg. 2003;61:1045–53.

    Article  PubMed  Google Scholar 

  32. Chang SC, Chuang H, Chen YR, Yang LC, Chen JK, Mardini S, et al. Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J Surg Res. 2004;119:85–91.

    Article  CAS  PubMed  Google Scholar 

  33. Iwasaki M, Nakahara H, Nakase T, Kimura T, Takaoka K, Caplan AI, et al. Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum-derived cells. J Bone Miner Res. 1994;9:1195–204.

    Article  CAS  PubMed  Google Scholar 

  34. Kubler N, Urist MR. Allogenic bone and cartilage morphogenesis. Rat BMP in vivo and in vitro. J Craniomaxillofac Surg. 1991;19:283–8.

    CAS  PubMed  Google Scholar 

  35. Lecanda F, Avioli LV, Cheng SL. Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. J Cell Biochem. 1997;67:386–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our laboratory technician Gisela Otto, for her assistance with the analytical and cell culture procedures and Sebastian Spath for his excellent technical assistance. The authors thank the European Union for financial support within the framework of the MyJoint Project (FP-6 NEST 028861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan T. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, S.T., Douglas, T., Acil, Y. et al. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering. J Mater Sci: Mater Med 21, 1255–1262 (2010). https://doi.org/10.1007/s10856-009-3878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3878-y

Keywords

Navigation