Skip to main content
Log in

Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)–chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA–CS scaffolds were evaluated. The results suggested CII/HyA–CS scaffolds have a highly porous structure (porosity: 94.8 ± 1.5%), high water-binding capacity (79.2 ± 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 ± 1.8 and 58.1 ± 2.6°C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 ± 3.4 and 63.5 ± 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA–CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA–CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersson GB, Schultz A, Nathan A, Irstam L. Roentgenographic measurement of lumbar intervertebral disc height. Spine. 1981;6:154–8.

    Article  CAS  PubMed  Google Scholar 

  2. Yasuma T, Koh S, Okamura T, Yamauchi Y. Histological changes in aging lumbar intervertebral discs. Their role in protrusions and prolapses. J Bone Joint Surg Am. 1990;72:220–9.

    CAS  PubMed  Google Scholar 

  3. Kuslich SD, Ulstrom CL, Michael CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am. 1991;22:181–7.

    CAS  PubMed  Google Scholar 

  4. Schwarzer AC, Aprill CN, Derby R, et al. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine. 1995;20:1878–83.

    Article  CAS  PubMed  Google Scholar 

  5. Hutton WC, Toribatake Y, Elmer WA, et al. The effect of compressive force applied to the intervertebral disc in vivo. A study of proteoglycans and collagen. Spine. 1998;23:2524–37.

    Article  CAS  PubMed  Google Scholar 

  6. Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine. 2000;25:1477–83.

    Article  CAS  PubMed  Google Scholar 

  7. An H, Boden SD, Kang J, et al. Summary statement: emerging techniques for treatment of degenerative lumbar disc disease. Spine. 2003;28:S24–5.

    Article  PubMed  Google Scholar 

  8. Huang RC, Sandhu HS. The current status of lumbar total disc replacement. Orthop Clin North Am. 2004;35:33–42.

    Article  PubMed  Google Scholar 

  9. Inoue H. Three-dimensional architecture of lumbar intervertebral discs. Spine. 1981;6:139–46.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Yu J, Winlove CP, Roberts S, Urban JP. Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat. 2002;201:465–75.

    Article  PubMed  Google Scholar 

  11. Paesold G, Nerlich AG, Boos N. Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J. 2007;16:447–68.

    Article  PubMed  Google Scholar 

  12. Adler JH, Schoenbaum M, Silberberg R. Early onset of disk degeneration and spondylosis in sand rats (Psammomys obesus). Vet Pathol. 1983;20:13–22.

    CAS  PubMed  Google Scholar 

  13. Wakatsuki T, Elson EL. Reciprocal interactions between cells and extracellular matrix during remodeling of tissue constructs. Biophys Chem. 2003;100:593–605.

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Li X. Nucleus pulposus tissue engineering: a brief review. Eur Spine J. 2009 [Epub ahead of print].

  15. Moller HJ, Heinegard D, Poulsen JH. Combined alcian blue and silver staining of subnanogram quantities of proteoglycans and glycosaminoglycans in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1993;209:169–75.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang R, Ma PX. Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res. 1999;45:285–93.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  17. Liu LS, Thompson AY, Heidaran MA, et al. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials. 1999;20:1097–108.

    Article  CAS  PubMed  Google Scholar 

  18. Pieper JS, Hafmans T, Veerkamp JH, et al. Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials. 2000;21:581–93.

    Article  CAS  PubMed  Google Scholar 

  19. Rong Y, Sugumaran G, Silbert JE, et al. Proteoglycans synthesized by canine intervertebral disc cells grown in a type I collagen–glycosaminoglycan matrix. Tissue Eng. 2002;8:1037–47.

    Article  CAS  PubMed  Google Scholar 

  20. Sato M, Kikuchi M, Ishihara M, et al. Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold). Med Biol Eng Comput. 2003;41:365–71.

    Article  CAS  PubMed  Google Scholar 

  21. Brown RQ, Mount A, Burg KJ. Evaluation of polymer scaffolds to be used in a composite injectable system for intervertebral disc tissue engineering. J Biomed Mater Res A. 2005;74:32–9.

    PubMed  Google Scholar 

  22. Seguin CA, Grynpas MD, Pilliar RM, et al. Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine. 2004;29:1299–306; discussion 1306–1297.

    Article  PubMed  Google Scholar 

  23. Chiba K, Andersson GB, Masuda K, et al. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine. 1997;22:2885–93.

    Article  CAS  PubMed  Google Scholar 

  24. Baer AE, Wang JY, Kraus VB, et al. Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res. 2001;19:2–10.

    Article  CAS  PubMed  Google Scholar 

  25. Le Visage C, Yang SH, Kadakia L, et al. Small intestinal submucosa as a potential bioscaffold for intervertebral disc regeneration. Spine. 2006;31:2423–30; discussion 2431.

    Article  PubMed  Google Scholar 

  26. Crevensten G, Walsh AJ, Ananthakrishnan D, et al. Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng. 2004;32:430–4.

    Article  PubMed  Google Scholar 

  27. Roughley P, Hoemann C, DesRosiers E, et al. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials. 2006;27:388–96.

    Article  CAS  PubMed  Google Scholar 

  28. Yang SH, Chen PQ, Chen YF, et al. An in vitro study on regeneration of human nucleus pulposus by using gelatin/chondroitin-6-sulfate/hyaluronan tri-copolymer scaffold. Artif Organs. 2005;29:806–14.

    Article  CAS  PubMed  Google Scholar 

  29. Sakai D, Mochida J, Iwashina T, et al. Atelocollagen for culture of human nucleus pulposus cells forming nucleus pulposus-like tissue in vitro: influence on the proliferation and proteoglycan production of HNPSV-1 cells. Biomaterials. 2006;27:346–53.

    Article  CAS  PubMed  Google Scholar 

  30. Halloran DO, Grad S, Stoddart M, et al. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials. 2008;29:438–47.

    Article  CAS  PubMed  Google Scholar 

  31. Gruber HE, Leslie K, Ingram J, et al. Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J. 2004;4:44–55.

    Article  PubMed  Google Scholar 

  32. Taguchi T, Ikoma T, Tanaka J. An improved method to prepare hyaluronic acid and type II collagen composite matrices. J Biomed Mater Res. 2002;61:330–6.

    Article  CAS  PubMed  Google Scholar 

  33. Doillon CJ, Whyne CF, Brandwein S, et al. Collagen-based wound dressings: control of the pore structure and morphology. J Biomed Mater Res. 1986;20:1219–28.

    Article  CAS  PubMed  Google Scholar 

  34. O’Brien FJ, Harley BA, Yannas IV, et al. Influence of freezing rate on pore structure in freeze-dried collagen–GAG scaffolds. Biomaterials. 2004;25:1077–86.

    Article  PubMed  CAS  Google Scholar 

  35. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24:759–67.

    Article  CAS  PubMed  Google Scholar 

  36. Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen–glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22:3145–54.

    Article  CAS  PubMed  Google Scholar 

  37. Cao H, Xu S-Y. EDC/NHS-crosslinked type II collagen–chondroitin sulfate scaffold: characterization and in vitro evaluation. J Mater Sci: Mater Med. 2008;19:567–75.

    Article  CAS  Google Scholar 

  38. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  39. Pieper JS, van der Kraan PM, Hafmans T, et al. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials. 2002;23:3183–92.

    Article  CAS  PubMed  Google Scholar 

  40. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10:432–63.

    Article  CAS  PubMed  Google Scholar 

  41. Al-Munajjed AA, Hien M, Kujat R, et al. Influence of pore size on tensile strength, permeability and porosity of hyaluronan–collagen scaffolds. J Mater Sci: Mater Med. 2008;19:2859–64.

    Article  CAS  Google Scholar 

  42. Anselme K, Bacques C, Charriere G, et al. Tissue reaction to subcutaneous implantation of a collagen sponge. A histological, ultrastructural, and immunological study. J Biomed Mater Res. 1990;24:689–703.

    Article  CAS  PubMed  Google Scholar 

  43. van Wachem PB, Plantinga JA, Wissink MJ, et al. In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res. 2001;55:368–78.

    Article  PubMed  Google Scholar 

  44. Gagnieu CH, Forest PO. In vivo biodegradability and biocompatibility of porcine type I atelocollagen newly crosslinked by oxidized glycogen. Biomed Mater Eng. 2007;17:9–18.

    CAS  PubMed  Google Scholar 

  45. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30772186) and the Youth Science and Research Foundation of the Third Military Medical University (No. XG2005D127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou.

Additional information

Chang-qing Li and Bo Huang are co-first authors. Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Cq., Huang, B., Luo, G. et al. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility. J Mater Sci: Mater Med 21, 741–751 (2010). https://doi.org/10.1007/s10856-009-3871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3871-5

Keywords

Navigation