Skip to main content
Log in

Structural properties of polysaccharide-based microcapsules for soft tissue regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Autologous and eterologous cell encapsulation has been extensively studied for clinical application in functional organs substitution, recombinant cell transplantation in gene therapy or in muscle and cartilage regeneration to treat degenerative pathologies. In this work, calcium alginate, calcium alginate/chitosan, calcium alginate/gelatin and pectin/chitosan microcapsules were prepared to be used as innovative injectable scaffolds for soft tissue regeneration by a simple extrusion method from aqueous solutions. Prepared microcapsules had spherical morphology, whereas their size was deeply influenced by the polymeric composition. When incubated in a physiological-like environment up to 30 days, they underwent an initial swelling, followed by weight loss at different rates, depending on the microcapsules formulation. The encapsulation of mouse myoblast cells (C2C12 cell line) was obtained in calcium alginate, calcium alginate/chitosan, calcium alginate/gelatin microcapsules. Cells were alive throughout the encapsulation procedure, and were recovered by a mechanical rupture of the microcapsules. After 7 days, fractured microcapsules led cells to migrate gradually out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ríhová B. Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deliv Rev. 2000;42(1–2):65–80.

    PubMed  Google Scholar 

  2. Chia SM, Wan ACA, Quek CH, Mao HQ, Xu X, Shen L, et al. Multi-layered microcapsules for cell encapsulation. Biomaterials. 2002;23(3):849–56.

    Article  CAS  PubMed  Google Scholar 

  3. Bhatia SR, Khattak SF, Roberts SC. Polyelectrolytes for cell encapsulation. Curr Opin Colloid Interface Sci. 2005;10(1–2):45–51.

    Article  CAS  Google Scholar 

  4. Abbah SA, Lu WW, Chan D, Cheung KMC, Liu WG, Zhao F, et al. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun. 2006;347(1):185–91.

    Article  CAS  PubMed  Google Scholar 

  5. Orive G, Hernàndez RM, Gascòn AR, Gascòn RC, Chang TMS, De Vos P, et al. Cell encapsulation: promise and progress. Nat Med. 2003;9(1):104–7.

    Article  CAS  PubMed  Google Scholar 

  6. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials. 2005;26(34):7095–103.

    Article  CAS  PubMed  Google Scholar 

  7. Suh J-F, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.

    Article  CAS  PubMed  Google Scholar 

  8. Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Controlled Release. 2007;119(1):5–24.

    Article  CAS  Google Scholar 

  9. Kuo SM, Niu GC, Chang SJ, Kuo CH, Bair MS. A one-step method for fabricating chitosan microspheres. J Appl Polym Sci. 2004;94(5):2150–7.

    Article  CAS  Google Scholar 

  10. Zhao Y, Tian F, Liu C, Li F, Xing N. Preparation and evaluation of poly(3-hydroxybutyrate) microspheres containing bovine serum albumin for controlled release. J Appl Polym Sci. 2008;110(6):3826–35.

    Article  CAS  Google Scholar 

  11. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res. 2000;51(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  12. Dorian RE, Cochrum KC, Microcapsule generating system and method of using same. 2005;56:315–23. WO/1995/019840.

  13. Brandau T. Preparation of monodisperse controlled release microcapsules. Int J Pharm. 2002;242:179–84.

    Article  CAS  PubMed  Google Scholar 

  14. Schwinger C, Klemenz A, Busse K, Kressler J. Encapsulation of living cells with polymeric systems. Macromol Symp. 2004;210(1):493–9.

    Article  CAS  Google Scholar 

  15. Sriamornsak P, Puttipipatkhachorn S. Chitosan-pectin composite gel spheres: effect of some formulation variables on drug release. Macromol Symp. 2004;216:17–21.

    Article  CAS  Google Scholar 

  16. Mishra RK, Datt M, Pal K, Banthia AK. Preparation and characterization of amidated pectin based hydrogels for drug delivery system. Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J Mater Sci: Mater Med. 2008;19(6):2275.

    Article  CAS  Google Scholar 

  17. Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266–77.

    Article  CAS  PubMed  Google Scholar 

  18. El-Nawawi SA, Heikal YA. Production of a low ester pectin by de-esterification of high ester citrus pectin. Carbohydr Polym. 1995;27(3):191–5.

    Article  CAS  Google Scholar 

  19. Liu L, Won YJ, Cooke PH, Coffin DR, Fishman ML, Hicks KB, et al. Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications. Biomaterials. 2004;25(16):3201–10.

    Article  CAS  PubMed  Google Scholar 

  20. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials. 2007;28(21):3217–27.

    Article  CAS  PubMed  Google Scholar 

  21. Alhadlaq A, Tang M, Mao JJ. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng. 2005;11(3/4):556–66.

    Article  CAS  PubMed  Google Scholar 

  22. Vrana NE, O’Grady A, Kay E, Cahill PA, McGuinness GB. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med. 2009 [Epub ahead of print]. doi: 10.1002/term.193.

  23. Athanasekou CP, Papageorgiou SK, Kaselouri V, Katsaros FK, Kakizis NK, Sapalidis AA, et al. Development of hybrid alginate/ceramic membranes for Cd2+ removal. Microporous Mesoporous Mater. 2009;120(1/2):154–64.

    Article  CAS  Google Scholar 

  24. Maghami GG, Roberts GAF. Evaluation of the viscometric constants for chitosan. Die Makromolecular Chemie. 2003;189(1):195–200.

    Article  Google Scholar 

  25. Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001;42(8):3569–80.

    Article  CAS  Google Scholar 

  26. Iglesias MT, Lozano JE. Extraction and characterization of sunflower pectin. J Food Eng. 2004;62(3):215–23.

    Article  Google Scholar 

  27. Institute of medicine of the National Academies. Food Chemical Codex. fourth ed. Washington: Institute of medicine of the National Academy press; 1996.

  28. Draghi L, Brunelli D, Farè S, Tanzi MC. Development of a micro-encapsulation system for controlled cell delivery. Proceedings of 32th Annual Meeting, Society for Biomaterials; 18–21 April 2007.

  29. Caliandro G. Microencapsulation systems for controlled cell delivery, Master thesis in Biomedical Engineering, Politecnico di Milano, Academic year 2006–2007.

  30. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol. 2007;8(8):2533–41.

    Article  CAS  Google Scholar 

  31. Fan L, Du Y, Huang R, Wang Q, Wang X, Zhang L. Preparation and characterization of alginate/gelatin blend fibers. J Appl Polym Sci. 2005;96(5):1625–9.

    Article  CAS  Google Scholar 

  32. Singthong J, Ningsanond S, Cui SW, Douglas Goff H. Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocoll. 2005;19(5):793–801.

    Article  CAS  Google Scholar 

  33. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  34. Blandino A, Macias M, Cantero D. Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics. J Biosci Bioeng. 1999;88(6):686–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm. 2006;323(1–2):34–42.

    Article  CAS  PubMed  Google Scholar 

  36. Kong HJ, Kaigler D, Kim K, Mooney DJ. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromol. 2004;5(5):1720–7.

    Article  CAS  Google Scholar 

  37. Shoichet MS, Li RH, White ML, Winn SR. Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol Bioeng. 1996;50(4):374–81.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Yu G, Guan H, Zhao X, Du Y, Jiang X. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp. 510. Carbohydr Res. 2004;339(8):1475–81.

    Article  CAS  PubMed  Google Scholar 

  39. Bajpai SK, Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym. 2004;59(2):129–40.

    Article  CAS  Google Scholar 

  40. Silva CM, Ribeiro AJ, Figueiredo M, Ferreira D, Veiga F. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J. 2005;7(4):903–13.

    Article  Google Scholar 

  41. Tam SK, Dusseault J, Polizu S, Ménard M, Hallé J, Yahia L. Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF–SIMS. Biomaterials. 2005;26(34):6950–61.

    Article  CAS  PubMed  Google Scholar 

  42. Sartori C, Finch DS, Ralph B, Gilding K. Determination of the cation content of alginate thin films by FTi.r. spectroscopy. Polymer. 1997;38(1):43–51.

    Article  CAS  Google Scholar 

  43. Ribeiro CC, Barrias CC, Barbosa MA. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials. 2004;25(18):4363–73.

    Article  CAS  PubMed  Google Scholar 

  44. Bigucci F, Luppi B, Cerchiara T, Sorrenti M, Bettinetti G, Rodriguez L, et al. Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci. 2008;35(5):435–41.

    Article  CAS  PubMed  Google Scholar 

  45. Mourkioti F, Rosenthal N. IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol. 2005;26(10):535–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Italian Institute of Technology (IIT, Istituto Italiano di Tecnologie) within the project “NanoBiotechnology—Research Line 1: Biosensors and artificial bio-systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Munarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munarin, F., Petrini, P., Farè, S. et al. Structural properties of polysaccharide-based microcapsules for soft tissue regeneration. J Mater Sci: Mater Med 21, 365–375 (2010). https://doi.org/10.1007/s10856-009-3860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3860-8

Keywords

Navigation