Skip to main content
Log in

Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Precipitates formed at an early stage (during the first 6 h) of the hydroxyapatite crystallization of a solution were studied. A nitrous synthesis was used (0.583M (NH4)2HPO4 and 0.35 M Ca(NO3)2·4H2O solutions at pH 11–12, 21°C, fast mixing, lyophilization of aliquots). Although XRD patterns indicated an amorphous calcium phosphate (ACP), IR spectra revealed apatite nanocrystals in the precipitates. Some amount of free calcium was found in the mother solution by mass spectrometrical analysis of the aliquots. This amount considerably decreased as the synthesis proceeded, however, the decrease had a slight effect on the crystallinity of the precipitates. A new suggestion on the nature of delayed crystallization (under conditions as those in the present study) was proposed. The free calcium adsorbed by the nanoparticles from the solution formed a shell around a particle because the calcium diffusion into the bulk was poor at the low synthesis temperature. As such, the encapsulation delayed the crystallization of the nanoparticles. Evidence for this suggestion was given. New possibilities were proposed for preparation of bioactive materials of desired composition based on the structural and compositional peculiarities of the X-ray diffractionamorphous calcium phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bachra BN, Trauts OR, Simon SL. Precipitation of calcium carbonates, phosphates. I. Spontaneous precipitation of calcium carbonates, phosphates under physiological conditions. Arch Biochem Biophys. 1963;103:124–38.

    Article  CAS  PubMed  Google Scholar 

  2. Eanes ED, Gillessen IH, Posner AS. Intermediate states in the precipitation of hydroxyapatite. Nature. 1965;208:365–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Termine JD, Posner AS. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science. 1966;153:1523–5.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Termine JD, Posner AS. Amorphous/crystalline interrelationships in bone mineral. Calcif Tissue Res. 1967;1:8–23.

    Article  CAS  PubMed  Google Scholar 

  5. Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Bone Miner Struct. 1975;8:273–81.

    CAS  Google Scholar 

  6. Ratner BD. Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press; 2004.

  7. Epple M, Baeuerlein E, editors. Biomineralisation: medical and clinical aspects. Weinheim: Wiley-VCH; 2007.

    Google Scholar 

  8. Narasaraju TSB, Phebe DE. Some physico-chemical aspects of hydroxylapatite. J Mater Sci. 1996;31:1–21.

    Article  CAS  ADS  Google Scholar 

  9. Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci. 2008;43:3028–57.

    Article  CAS  ADS  Google Scholar 

  10. Sokolova V, Kovtun A, Prymak O, Meyer-Zaika W, Kubareva EA, Romanova EA, et al. Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing. J Mater Chem. 2007;17:721–7.

    Article  CAS  Google Scholar 

  11. Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatite. Biomaterials. 2002;23:2553–9.

    Article  CAS  PubMed  Google Scholar 

  12. Termine JD, Eanes ED. Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res. 1972;10:171–97.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Weng W. In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios. J Mater Sci Mater Med. 2007;18:2303–8.

    Article  CAS  PubMed  Google Scholar 

  14. Suvorova EI, Buffat PA. Electron diffraction and high resolution transmission electron microscopy in the characterization of calcium phosphate precipitation from aqueous solutions under biomineralization conditions. Eur Cells Mater. 2001;1:27–42.

    CAS  Google Scholar 

  15. Suvorova EI, Buffat P-A. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles. Crystallogr Rep. 2001;46:722–9.

    Article  ADS  Google Scholar 

  16. Termine JD, Posner AS. Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Arch Biochem Biophys. 1970;140:307–17.

    Article  CAS  PubMed  Google Scholar 

  17. Termine JD, Peckauskas RA, Posner AS. Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transformation. Arch. Arch Biochem Biophys. 1970;140:318–25.

    Article  CAS  PubMed  Google Scholar 

  18. Greenfield DJ, Eanes ED. Formation chemistry of amorphous calcium phosphates prepared from carbonate containing solutions. Calcif Tissue Res. 1972;9:152–62.

    Article  CAS  PubMed  Google Scholar 

  19. Boskey AL, Posner AS. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-state conversion. J Phys Chem. 1973;77:2313–7.

    Article  CAS  Google Scholar 

  20. Greenfield DJ, Termine JD, Eanes ED. A chemical study of apatites prepared by hydrolysis of amorphous calcium phosphates in carbonate-containing aqueous solutions. Calcif Tissue Res. 1974;14:131–8.

    Article  CAS  PubMed  Google Scholar 

  21. Blumenthal NC, Betts F, Posner AS. Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif Tissue Res. 1977;23:245–50.

    Article  CAS  PubMed  Google Scholar 

  22. Brečević L, Hlady V, Füredi-Milhofer H. Influence of gelatin on the precipitation of amorphous calcium phosphate. Colloids Surf. 1987;28:301–13.

    Article  Google Scholar 

  23. Abbona F, Baronnet A. A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J Cryst Growth. 1996;165:98–105.

    Article  CAS  ADS  Google Scholar 

  24. Kim S, Ryu H–S, Shin H, Jung HS, Hong KS. Direct observation of hydroxyapatite nucleation from amorphous phase in a stoichiometric calcium/phosphate aqueous solution. Chem Lett. 2004;33:1292–3.

    Article  CAS  Google Scholar 

  25. Urch H, Vallet-Regi M, Ruiz L, Gonzalez-Calbet JM, Epple M. Calcium phosphate nanoparticles with adjustable dispersability and crystallinity. J Mater Chem. 2009;19:2166-71.

    Article  CAS  Google Scholar 

  26. Anderson CW, Beebe RA, Kittelberger JS. Programmed temperature dehydration studies of octacalcium phosphate. J Phys Chem. 1974;78:1631–5.

    Article  CAS  Google Scholar 

  27. Liu C, Huang Y, Shen W, Cui J. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials. 2001;22:301–6.

    Article  CAS  PubMed  Google Scholar 

  28. Eichert D, Sfihi H, Banu M, Cazalbou S, Combes C, Rey C. Surface structure of nanocrystalline apatites for bioceramics and coatings. CIMTEC 2002 proceedings, 10th inter. ceramics congress and 3rd forum of new materials, Florence, Italy, Juillet 14–18, 2002.

  29. Harries JE, Hukins DWL, Holt C, Hasnain SS. Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J Cryst Growth. 1987;84:563–70.

    Article  CAS  ADS  Google Scholar 

  30. Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica. 1967;22:151–2.

    Article  CAS  Google Scholar 

  31. Gadaleta SJ, Paschalis EP, Betts F, Mendelson R, Boskey AL. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int. 1996;58:9–16.

    Article  CAS  PubMed  Google Scholar 

  32. Termine JD, Posner AS. Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates. Nature. 1966;211:268–70.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Zyman Z, Epple M, Rokmistrov D, Glushko V. On impurities and the internal structure in precipitates occurring during the precipitation of nanocrystalline calcium phosphate. Mat-wiss u Werkstofftech. 2009;40:297–301.

    Google Scholar 

  34. The Chemical Encyclopedic Vocabulary. In: Knunyanc IL editor. Soviet Enciclopedia Press, Moscow, 1983.

  35. Ruys AJ, Sorrell CC, Brandwood A, Milthorpe BK. Hydroxyapatite sintering characteristics: correlation with powder morphology by high-resolution microscop. J Mater Sci Lett. 1995;14:744–7.

    CAS  Google Scholar 

  36. Ishikawa K, Ducheyne P, Radin S. Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci: Mater Med. 1993;4:165–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Z. Zyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zyman, Z.Z., Rokhmistrov, D.V. & Glushko, V.I. Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation. J Mater Sci: Mater Med 21, 123–130 (2010). https://doi.org/10.1007/s10856-009-3856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3856-4

Keywords

Navigation