Skip to main content
Log in

The effects of hydroxyl groups on Ca adsorption on rutile surfaces: a first-principles study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyl groups on titanium surfaces have been believed to play an important role in absorbing Ca in solution, which is crucial in the formation of bioactive calcium phosphates both in vitro and in vivo. CASTEP, a first-principles density functional theory (DFT) code, was employed to investigate Ca adsorption on various rutile (110) surfaces in order to clarify how hydroxyl groups effect Ca adsorption. The surfaces modeled in the present study include a bare rutile (110) surface, a hydroxylated rutile (110) surface, an oxidized rutile (110) surface, and a rutile (110) surface bonded with mixed OH groups and water. The results reveal that not all OH groups favors to attract Ca adsorption and loosely bonded OH and water on a rutile surface actually combine with Ca during adsorption. An oxidized rutile surface has the highest ability to attract Ca atoms, which partially explains that alkali-treated Ti surfaces could induce hydroxyapatite formation in alkaline environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu X, Zhao Z, Leng Y. Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Mater Sci Eng C. 2007;27:700–8.

    Article  CAS  Google Scholar 

  2. Kokubo T, Kim H, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  PubMed  Google Scholar 

  3. Kokubo T, Kim HM, Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J Mater Sci: Mater Med. 2004;15:99–107.

    Article  CAS  Google Scholar 

  4. Kokubo T, Miyaji F, Kim H, Nakamura T. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc. 1996;79:1127–9.

    Article  CAS  Google Scholar 

  5. Lu X, Leng Y. TEM study of calcium phosphate precipitation on bioactive titanium surfaces. Biomaterials. 2004;25:1779–86.

    Article  CAS  PubMed  Google Scholar 

  6. Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials. 2005;26:1097–108.

    Article  CAS  PubMed  Google Scholar 

  7. Lu X, Wang Y, Yang X, Zhang Q, Zhao Z, Weng L, et al. Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviors in vitro and in vivo. J Biomed Mater Res. 2008;84A:523–34.

    Article  CAS  Google Scholar 

  8. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter. 2002;14(11):2717–43.

    Article  CAS  ADS  Google Scholar 

  9. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, et al. First principles methods using CASTEP. Zeitschrift fuer Krystallographie. 2005;220:567–70.

    Article  CAS  Google Scholar 

  10. Rohanizadeh R, Al-Sadeq M, LeGeros RZ. Preparation of different forms of titanium oxide on titanium surface: effects on apatite deposition. J Biomed Mater Res. 2004;71A:343–52.

    Article  CAS  Google Scholar 

  11. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T. Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res. 2003;64A:164–70.

    Article  CAS  Google Scholar 

  12. Wang XX, Yan W, Satoshi H, Tsuru K, Osaka A. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials. 2003;24:4631–7.

    Article  CAS  PubMed  Google Scholar 

  13. Harris LA, Quong AA. Molecular chemisorpiton as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110). Phys Rev Lett. 2004;93:0861051–4.

    Article  Google Scholar 

  14. Pabisiak T, Kiejna A. Energetics of oxygen vacancies at rutile TiO2(110) surface. Solid State Commun. 2007;144:324–8.

    Article  CAS  ADS  Google Scholar 

  15. Kornherr A, Tortschanoff A, Portuondo-Campa E, van Mourik F, Chergui M, Zifferer G. Modelling of aqueous solvation of eosin Y at the rutile TiO2(110)/water interface. Chem Phys Lett. 2006;430:375–9.

    Article  CAS  ADS  Google Scholar 

  16. Svetina M, Ciacchi LC, Sbaizero O, Meriani S, DeVita A. Deposition of calcium ions on rutile (110): a firstprinciples investigation. Acta Mater. 2001;49:2169–77.

    Article  CAS  Google Scholar 

  17. Komolov AS, Moller PJ, Mortensen J, Komolov SA, Laznev EF. Modification of the electronic properties of the TiO2 (110) surface upon deposition of the ultrathin conjugated organic layers. Appl Surf Sci. 2007;253:7376–80.

    Article  CAS  ADS  Google Scholar 

  18. San Miguel MA, Oviedo J, Sanz JF. Ca deposition on TiO2(110) surfaces: insights from quantum calculations. J Phys Chem C. 2009;113(9):3740–5.

    Article  CAS  Google Scholar 

  19. Bates SP, Kresse G, Gillan MJ. The adsorption and dissociation of ROH molecules on TiO2(110). Surf Sci. 1998;409:336–49.

    Article  CAS  ADS  Google Scholar 

  20. Langel W. Car-Parrinello simulation of H2O dissociation on Rutile. Surf Sci. 2002;496:141–50.

    Article  CAS  ADS  Google Scholar 

  21. Lindan PJD, Harrison NM, Gillan MJ. Mixed dissociative and molecular adsorption of water on the rutile (110) surface. Phys Rev Lett. 1998;80:762–5.

    Article  CAS  ADS  Google Scholar 

  22. Han Y, Liu CJ, Ge QF. Interaction of Pt clusters with the anatase TiO2(101) surface: a first principles study. J Phys Chem B. 2006;110:7463–72.

    Article  CAS  PubMed  Google Scholar 

  23. Ding K, Li J, Zhang Y. Cu and NO coadsorption on TiO2(110) surface: a density functional theory study. J Mol Struc-Theochem. 2005;728:123–7.

    Article  CAS  Google Scholar 

  24. Mattsson A, Leideborg M, Larsson K, Westin G, Osterlund L. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J Phys Chem B. 2006;110:1210–20.

    Article  CAS  PubMed  Google Scholar 

  25. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892–5.

    Article  ADS  Google Scholar 

  26. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–92.

    Article  MathSciNet  ADS  Google Scholar 

  27. Zhang Z, Fenter P, Kelly SD, Catalano JG, Bandura AV, Kubicki JD, et al. Structure of hydrated Zn2+ at the rutile TiO2 (110)-aqueous solution interface: comparison of X-ray standing wave, X-ray absorption spectroscopy, and density functional theory results. Geochimica Cosmochimica Acta. 2006;70:4039–56.

    Article  CAS  ADS  Google Scholar 

  28. Sanz JF, Marquez A. Adsorption of Pd atoms and dimers on the TiO2 (110) surface: a first principles study. J Phys Chem C. 2007;111:3949–55.

    Article  CAS  Google Scholar 

  29. Long R, Dai Y, Jin H, Huang B. Structural, elastic, and electronic properties of ReB2: a first-principles calculation. Res Lett Phys. 2008;Article ID 293517:1-5.

  30. Segall MD, Shah R, Pickard CJ, Payne MC. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B. 1996;54(23):16317–20.

    Article  CAS  ADS  Google Scholar 

  31. Kokubo T, Matsushita T, Takadama H, Kizukia T. Development of bioactive materials based on surface chemistry. J Euro Ceram Soc. 2009;29:1267–74.

    Article  CAS  Google Scholar 

  32. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials. 2003;24:4663–70.

    Article  CAS  PubMed  Google Scholar 

  33. Boehm H. Acidic and basic properties of hydroxylated metal oxide surface. Faraday Discuss. 1971;52:264–75.

    Article  Google Scholar 

  34. Sham T, Lazarus M. X-ray photoelectron spectroscopy studies of clean and hydrated TiO2 surfaces. Chem Phys Lett. 1979;68:426–32.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the NSFC (30700172), NSFC/RGC Joint Research Funding (N_HKUST601/08, 30831160509), Specialized Research Fund for the Doctoral Program of Higher Education for Young Teacher (20070613019), and National Key Project of Scientific and Technical Supporting Programs Fund from MSTC (2006BAI16B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Zhang, Hp., Leng, Y. et al. The effects of hydroxyl groups on Ca adsorption on rutile surfaces: a first-principles study. J Mater Sci: Mater Med 21, 1–10 (2010). https://doi.org/10.1007/s10856-009-3828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3828-8

Keywords

Navigation