Skip to main content

Advertisement

Log in

Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Deficient vascularization is one of the prominent shortcomings of porous tissue-engineering scaffolds, which results in insufficient oxygen and nutrients transportation. Here, heparin cross-linked demineralized bone matrices (HC-DBM) pre-loaded with vascular endothelial growth factor (VEGF) were designed to promote cells and new microvessels invasion into the matrices. After being chemical crosslinked with heparin by N-hydroxysuccinimide and N-(3-di-methylaminopropyl)-N’-ethylcarbodiimide, the scaffold could bind more VEGF than the non-crosslinked one and achieve localized and sustained delivery. The biological activity of VEGF binding on heparinized collagen was demonstrated by promoting endothelial cells proliferation. Evaluation of the angiogenic potential of heparinized DBM loaded with VEGF was further investigated by subcutaneous implantation. Improved angiogenesis of heparinized DBM loaded with VEGF was observed from haematoxylin-eosin staining and immunohistochemistry examination. The results demonstrated that heparin cross-linked DBM binding VEGF could be a useful strategy to stimulate cells and blood vessels invasion into the scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iwata H, Sakano S, Itoh T, Bauer TW. Demineralized bone matrix and native bone morphogenetic protein in orthopaedic surgery. Clin Orthop Relat Res. 2002;395(1):99–109.

    Article  PubMed  Google Scholar 

  2. Glowacki J, Kaban LB, Murray JE, Folkman J, Mulliken JB. Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet. 1981;1(8227):959–62.

    Article  CAS  PubMed  Google Scholar 

  3. Trevisiol CH, Turner RT, Pfaff JE, Hunter JC, Menagh PJ, Hardin K, et al. Impaired osteoinduction in a rat model for chronic alcohol abuse. Bone. 2007;41(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  4. Bomback DA, Grauer JN, Lugo R, Troiano N, Patel T, Friedlaender GE. Comparison of posterolateral lumbar fusion rates of Grafton Putty and OP-1 Putty in an athymic rat model. Spine. 2004;29(15):1612–7.

    Article  PubMed  Google Scholar 

  5. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine. 1998;23(2):159–67.

    Article  CAS  PubMed  Google Scholar 

  6. Martin GJ Jr, Boden SD, Titus L, Scarborough NL. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine. 1999;24(7):637–45.

    Article  PubMed  Google Scholar 

  7. Rabie AB. Vascular endothelial growth pattern during demineralized bone matrix induced osteogenesis. Connect Tissue Res. 1997;36(4):337–45.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Y, Chen B, Lin H, Sun W, Zhao W, Zhang J, et al. The bone-derived collagen containing mineralized matrix for the loading of collagen-binding bone morphogenetic protein-2. J Biomed Mater Res. 2009;88:725–34.

    Article  Google Scholar 

  9. Chen B, Lin H, Zhao Y, Wang B, Zhao Y, Liu Y, et al. Activation of demineralized bone matrix by genetically engineered human bone morphogenetic protein-2 with a collagen binding domain derived from von Willebrand factor propolypeptide. J Biomed Mater Res. 2007;80(2):428–34.

    Article  Google Scholar 

  10. Lu M, Rabie AB. The effect of demineralized intramembranous bone matrix and basic fibroblast growth factor on the healing of allogeneic intramembranous bone grafts in the rabbit. Arch Oral Biol. 2002;47(12):831–41.

    Article  CAS  PubMed  Google Scholar 

  11. Wittbjer J, Palmer B, Rohlin M, Thorngren KG. Osteogenetic activity in composite grafts of demineralized compact bone and marrow. Clin Orthop Relat Res 1983;173(1):229–238.

    PubMed  Google Scholar 

  12. Klagsbrun M, Moses MA. Molecular angiogenesis. Chem biol. 1999;6(8):R217–24.

    Article  CAS  PubMed  Google Scholar 

  13. Emad B, Sherifel M, Basma GM, Wong RW, Bendeus M, Rabie AB. Vascular endothelial growth factor augments the healing of demineralized bone matrix grafts. International journal of surgery(London, England). 2006;4(3):160–6.

    Google Scholar 

  14. van de Wijngaert FP, Tas MC, Burger EH. Characteristics of osteoclast precursor-like cells grown from mouse bone marrow. Bone Miner. 1987;3(2):111–23.

    PubMed  Google Scholar 

  15. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  16. Goth MI, Hubina E, Raptis S, Nagy GM, Toth BE. Physiological and pathological angiogenesis in the endocrine system. Microsc Res Tech. 2003;60(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  17. Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest. 1991;65(3):334–46.

    CAS  PubMed  Google Scholar 

  18. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  CAS  PubMed  Google Scholar 

  19. Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol. 2000;20(19):7282–91.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech. 2003;60(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  21. Boontheekul T, Mooney DJ. Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol. 2003;14(5):559–65.

    Article  CAS  PubMed  Google Scholar 

  22. Hao X, Silva EA, Mansson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res. 2007;75(1):178–85.

    Article  CAS  PubMed  Google Scholar 

  23. van den Beucken JJ, Walboomers XF, Nillesen ST, Vos MR, Sommerdijk NA, van Kuppevelt TH, et al. In vitro and in vivo effects of deoxyribonucleic acid-based coatings funtionalized with vascular endothelial growth factor. Tissue Eng. 2007;13(4):711–20.

    Article  PubMed  Google Scholar 

  24. Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW, et al. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials. 2008;29(19):2884–90.

    Article  CAS  PubMed  Google Scholar 

  25. Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res. 2007;24(2):258–64.

    Article  PubMed  Google Scholar 

  26. Sato M, Ishihara M, Ishihara M, Kaneshiro N, Mitani G, Nagai T, et al. Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2007;83(1):181–8.

    PubMed  Google Scholar 

  27. Chung HJ, Kim HK, Yoon JJ, Park TG. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm Res. 2006;23(8):1835–41.

    Article  CAS  PubMed  Google Scholar 

  28. Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, van Aken WG, et al. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release. 2000;64(1–3):103–14.

    Article  CAS  PubMed  Google Scholar 

  29. Gospodarowicz D, Cheng J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol. 1986;128(3):475–84.

    Article  CAS  PubMed  Google Scholar 

  30. Pike DB, Cai S, Pomraning KR, Firpo MA, Fisher RJ, Shu XZ, et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials. 2006;27(30):5242–51.

    Article  CAS  PubMed  Google Scholar 

  31. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993;4(12):1317–26.

    CAS  PubMed  Google Scholar 

  32. Lode A, Reinstorf A, Bernhardt A, Wolf-Brandstetter C, Konig U, Gelinsky M. Heparin modification of calcium phosphate bone cements for VEGF functionalization. J Biomed Mater Res. 2008;86(3):749–59.

    Article  CAS  Google Scholar 

  33. Riley CM, Fuegy PW, Firpo MA, Shu XZ, Prestwich GD, Peattie RA. Stimulation of in vivo angiogenesis using dual growth factor-loaded crosslinked glycosaminoglycan hydrogels. Biomaterials. 2006;27(35):5935–43.

    Article  CAS  PubMed  Google Scholar 

  34. Steffens GC, Yao C, Prevel P, Markowicz M, Schenck P, Noah EM, et al. Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng. 2004;10(9–10):1502–9.

    CAS  PubMed  Google Scholar 

  35. Jeon O, Kang SW, Lim HW, Hyung Chung J, Kim BS. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials. 2006;27(8):1598–607.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Ding L, Zhao Y, Sun W, Chen B, Lin H, et al. Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation. 2009;119(13):1776–84.

    Article  CAS  PubMed  Google Scholar 

  37. Yoon JJ, Chung HJ, Lee HJ, Park TG. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J Biomed Mater Res. 2006;79(4):934–42.

    Article  Google Scholar 

  38. Rebai O, Le Petit-Thevenin J, Bruneau N, Lombardo D, Verine A. In vitro angiogenic effects of pancreatic bile salt-dependent lipase. Arterioscler Thromb Vasc Biol. 2005;25(2):359–64.

    Article  CAS  PubMed  Google Scholar 

  39. Laschke MW, Elitzsch A, Vollmar B, Vajkoczy P, Menger MD. Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Hum Reprod. 2006;21(1):262–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bruick RK, McKnight SL. Building better vasculature. Genes Dev. 2001;15(19):2497–502.

    Article  CAS  PubMed  Google Scholar 

  41. Komori M, Tomizawa Y, Takada K, Ozaki M. A single local application of recombinant human basic fibroblast growth factor accelerates initial angiogenesis during wound healing in rabbit ear chamber. Anesth Analg. 2005;100(3):830–4. table of contents.

    Article  CAS  PubMed  Google Scholar 

  42. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. 2002;29(6 Suppl 16):10–4.

    CAS  PubMed  MathSciNet  Google Scholar 

  43. Jain RK. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol. 2002;29(6):3–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hang Lin, Ms. Xia Wang and Ms. Jin Han from Dai Lab for invaluable comments, and Ms Juan Fan and Mr Xianglin Hou from Dai Lab for their technical assistance. This work was supported by grants from National Natural Science Foundation of China (30688002; 30600304), the Ministry of Science and Technology of China (2006CB943601), Chinese Academy of Sciences (KSCX2-YW-R-133) and K. C. Wang Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Dai.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., He, Z., Chen, B. et al. Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J Mater Sci: Mater Med 21, 309–317 (2010). https://doi.org/10.1007/s10856-009-3827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3827-9

Keywords

Navigation