Skip to main content
Log in

Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effects of Bioglass 45S5® and Biosilicate®, on bone defects inflicted on the tibia of rats. Fifty male Wistar rats were used in this study, and divided into five groups, including a control group, to test Biosilicate® and Bioglass® materials of two different particle sizes (180–212 μm or 300–355 μm). All animals were sacrificed 15 days after surgery. No significant differences (P > 0.05) were found when values for Maximal load, Energy Absorption and Structural Stiffness were compared among the groups. Histopathological evaluation revealed osteogenic activity in the bone defect for the control group. Nevertheless, it seems that the amount of fully formed bone was higher in specimens treated with Biosilicate® (granulometry 300–355 μm) when compared to the control group. The same picture occurred regarding Biosilicate® with granulometry 180–212 μm. Morphometric findings for bone area results (%) showed no statistically significant differences (P > 0.05) among the groups. Taken together, such findings suggest that, Biosilicate® exerts more osteogenic activity when compared to Bioglass® under subjective histopathological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol. 2007;93:384–98. (Review).

    Article  PubMed  Google Scholar 

  2. Gautier E. Sommer guidelines for the clinical application of the LCP. Injury. 2003;34:B63–76. (Review).

    Article  PubMed  Google Scholar 

  3. Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed. 2004;15:543–62.

    Article  CAS  PubMed  Google Scholar 

  4. Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, et al. In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate). J Biomed Mater Res A. 2007;82:545–57.

    PubMed  Google Scholar 

  5. Thomas MV, Puleo DA, Al-Sabbagh M. Bioactive glass three decades on. J Long Term Eff Med Implants. 2005;15:585–97.

    CAS  PubMed  Google Scholar 

  6. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276:461–5.

    Article  CAS  PubMed  Google Scholar 

  7. Loty C, Sautier JM, Loty S, Hattar S, Asselin A, Oboeuf M, et al. The biomimetics of bone: engineered glass-ceramics a paradigm for in vitro biomineralization studies. Connect Tissue Res. 2002;43:524–8.

    CAS  PubMed  Google Scholar 

  8. Gough JE, Notingher I, Hench LL. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res A. 2004;68:640–50.

    Article  CAS  PubMed  Google Scholar 

  9. Wheeler DL, Montfort MJ, McLoughlin SW. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res. 2001;55:603–12.

    Article  CAS  PubMed  Google Scholar 

  10. Vallet-Regi M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001;78:97–108.

    Article  Google Scholar 

  11. Dieudonne SC, van den Dolder J, de Ruijter JE, Paldan H, Peltola T, van‘t Hof MA, et al. Osteoblast differentiation of bone marrow stromal cells cultured on silica gel and sol–gel-derived titania. Biomaterials. 2002;23:3041–51.

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro DA, Matsumoto MA. Low-level laser therapy improves bone repair in rats treated with anti-inflammatory drugs. J Oral Rehabil. 2008;35:925–33.

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto MA, Ferino RV, Monteleone GF, Ribeiro DA. Low-level laser therapy modulates cyclo-oxygenase-2 expression during bone repair in rats. Lasers Med Sci. 2009;24:195–201.

    Article  PubMed  Google Scholar 

  14. Weibel ER, Kistler GS, Scherle WF. Practical stereological methods for morphometric cytology. Philadelphia: WB Saunders Company; 1970. p. 58–82.

    Google Scholar 

  15. Claes L, Rüter A, Mayr E. Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop Relat Res. 2005;430:189–94.

    Article  PubMed  Google Scholar 

  16. Ribeiro DA, Hirota L, Cestari TM, Ceolin DS, Taga R, Assis GF, et al. J Mol Histol. 2006;37:361–7.

    Article  MATH  CAS  PubMed  Google Scholar 

  17. Reilly GC, Radin S, Chen AT, Ducheyne P. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials. 2007;28:4091–7.

    Article  CAS  PubMed  Google Scholar 

  18. Vogell M, Voigt T, Gross U, Muk C. In vivo comparison of bioactive glass particles in rabbits. Biomaterials. 2001;29:357–62.

    Article  Google Scholar 

  19. Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, et al. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res. 1997;334:316–25.

    Article  PubMed  Google Scholar 

  20. Cruz ACC, Pochapski MT, Daher JB, Silva JCZ, Pilatti GL, Santos FA. Physico-chemical characterization and biocompatibility evaluation of hydroxyapatites. J Oral Sci. 2006;48:219–26.

    Article  PubMed  Google Scholar 

  21. Nandi SK, Kundu B, Datta S, De DK, Basu D. The repair of segmental bone defects with porous bioglass: an experimental study in goat. Res Vet Sci. 2008;2:162–73.

    Google Scholar 

  22. Bretcanu O, Misra S, Roy I, Renghini C, Fiori F, Boccaccini AR, Salih V. In vitro biocompatibility of 45S5 Bioglass((R))-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med. 2009;2:139–48.

    Article  Google Scholar 

  23. Vargas GE, Mesones RV, Bretcanu O, López JM, Boccaccini AR, Gorustovich A. Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 2009;5:374–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to Fapesp (grant 07/08189-9), CAPES (Nanobiotec network 2009), and CNPq for generous financial support in the period 2007–2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Claudia M. Rennó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granito, R.N., Ribeiro, D.A., Rennó, A.C.M. et al. Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study. J Mater Sci: Mater Med 20, 2521–2526 (2009). https://doi.org/10.1007/s10856-009-3824-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3824-z

Keywords

Navigation