Skip to main content

Advertisement

Log in

Specific biofunctional performances of the hydroxyapatite–sodium maleate copolymer hybrid coating nanostructures evaluated by in vitro studies

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The nanohybrid structures consisting of hydroxyapatite (HA) and sodium maleate-vinyl acetate copolymer (MP) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique on Ti surfaces were investigated for specific biological qualities required in bone implantology. The data from in vitro studies demonstrated that human primary osteoblasts (OBs) firmly adhered to Ti coated with HA–MP as indicated by cytoskeleton and vinculin dynamics. OBs spread onto biomaterial surface and formed groups of cells which during their biosynthetic activity expressed OB phenotype specific markers (collagen and non-collagenous proteins) and underwent controlled proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Implantable medical devices and biocompatible materials industry (Review), Business Communications Company, Inc. USA; 2000.

  2. Schmalz G. Concepts in biocompatibility testing of dental restorative materials. Clin Oral Invest. 1998;1:154–62.

    Article  MathSciNet  Google Scholar 

  3. Kirkpatrick CJ, Peters K, Hermanns MI, Bittinger F, Krump-Kovalinkova V, Fuchs S, Unger RE. In vitro methodologies to evaluate biocompatibility : status quo and perspective. ITBM-RBM. 2005;26:192–9.

    Google Scholar 

  4. Black J. Biological performance of materials: fundamentals of biocompatibility. USA: CRC Press; 2006.

  5. Kirkpatrick CJ, Mittermayer C. Theoretical and practical aspects of testing potential biomaterials in vitro. J Mater Sci: Mater Med. 1990;1:9–13.

    Article  Google Scholar 

  6. Allen MJ, Rushton N. Use of the CytoTox 96 assay in routine biocompatibility testing in vitro. Promega Notes. 1994;45:7–10.

    Google Scholar 

  7. Jäger M, Fischer J, Schultheis A, Lensing-Höhn S, Krauspe R. Extensive H(+) release by bone substitutes affects biocompatibility in vitro testing. J Biomed Mater Res. 2006;76:310–22.

    Article  Google Scholar 

  8. Van Kooten TG, Klein CL, Kohler H, Kirkpatrick CJ, Williams DF, Eloy R. From cytotoxicity to biocompatibility testing in vitro: cell adhesion molecule expression defines a new set of parameters. J Mater Sci: Mater Med. 1997;8:835–41.

    Article  Google Scholar 

  9. Locci P, Marinucci L, Lilli C, Belcastro S, Staffolani N, Bellocchio S, et al. Biocompatibility of alloys used in orthodontics evaluated by cell culture tests. J Biomed Mater Res. 2000;51:561–8.

    Article  CAS  PubMed  Google Scholar 

  10. Suh H, Park JC, Han D-W, Lee DH, Han CD. A bone replaceable artificial bone substitute: cytotoxicity, cell adhesion, proliferation, and alkaline phosphatase activity. Artif Organs. 2001;25:14–21.

    Article  CAS  PubMed  Google Scholar 

  11. Hailea Y, Haasterta K, Cesnuleviciusa K, Stummeyerb K, Timmera M, Berskic S, et al. Culturing of glial and neuronal cells on polysialic acid. Biomaterials. 2007;28:1163–73.

    Article  Google Scholar 

  12. Ribeiro D, Duarte M, Matsumoto M, Marques M, Salvadori D. Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white portland cements. J Endod. 2005;31:605–7.

    Article  PubMed  Google Scholar 

  13. Braz MG, Camargo EA, Salvadori DMF, Marques MEA, Ribeiro DA. Evaluation of genetic damage in human peripheral lymphocytes exposed to mineral trioxide aggregate and Portland cements. J Oral Rehabil. 2006;33:234–9.

    Article  CAS  PubMed  Google Scholar 

  14. Shida J, Trindade MC, Goodman SB, Schurman DJ, Smith RL. Induction of interleukin-6 release in human osteoblast-like cells exposed to titanium particles in vitro. Calcif Tissue Int. 2000;67:151–5.

    Article  CAS  PubMed  Google Scholar 

  15. Vahey JW, Simonian PT, Conrad EU. Carcinogenicity and metallic implants. Am J Orthop. 1995;24:319–24.

    CAS  PubMed  Google Scholar 

  16. Trindade MCD, Lind M, Nakashima Y, Sun D, Goodman SB, Schurman DJ, et al. Interleukin-10 inhibits polymethylmethacrylate particle induced interleukin-6 and tumor necrosis factor-alpha release by human monocyte/macrophages in vitro. Biomaterials. 2001;22:2067–73.

    Article  CAS  PubMed  Google Scholar 

  17. Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA. 2007;102:5953–7.

    Article  ADS  Google Scholar 

  18. Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 1998;80:268–82.

    CAS  PubMed  Google Scholar 

  19. Staffolani N, Damiani F, Lilli C, Guerra M, Staffolani NJ, Belcastro S, et al. Ion release from orthodontic appliances. J Dent. 1999;27:449–53.

    Article  CAS  PubMed  Google Scholar 

  20. Le MK, Zhu XM. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Biomaterials. 2001;22:641–7.

    Article  CAS  PubMed  Google Scholar 

  21. Cui ZD, Chen MF, Zhang LY, Hu RX, Zhu SL, Yang XJ. Improving biocompatibility of NiTi alloy by chemical treatments: an in vitro evaluation in 3T3 human fibroblast cells. Mater Sci Eng C. 2008;28:1117–22.

    Article  CAS  Google Scholar 

  22. Ben-Nissan B, Milev A, Vagoc R. Morphology of sol–gel derived nano-coated coralline hydroxyapatite. Biomaterials. 2004;25:4971–5.

    Article  CAS  PubMed  Google Scholar 

  23. Kim H-W, Kim H-E. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics. J Biomed Mater Res B Appl Biomaterials. 2005;77b:323–328.

    Google Scholar 

  24. Wang Y-W, Wu Q, Chen J, Chen G-Q. Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials. 2005;26:899–904.

    Article  CAS  PubMed  Google Scholar 

  25. Bishop A, Balazsi C, Yang JHC, Gouma P-I. Biopolymer-hydroxyapatite composite coatings prepared by electrospinning. Polym Adv Technol. 2006;17:902–6.

    Article  CAS  Google Scholar 

  26. Kumar R, Prakash KH, Cheang P, Gower L, Khor KA. Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films. J R Soc Interface. 2008;5:427–39.

    Article  CAS  PubMed  Google Scholar 

  27. Pique A. Deposition of polymers and biomaterials using the matrix-assisted pulsed evaporation (Maple) process. In: Eason R, editor. Pulsed laser deposition of thin films. Applications-led growth of functional materials. Hoboken, NJ: Wiley-Interscience; 2007.

    Google Scholar 

  28. Cristescu R, Mihailescu IN, Jelinek M, Chrisey DB. Functionalized thin films and structures obtained by novel laser processing issues. In: Kassing R, Petkov P, Kulisch W and Popov C, editors. Functionalized properties of nanostructured materials, Nato Science Series II: Mathematics, Physics and Chemistry, Vol. 223. Springer, 2006. p. 211.

  29. Frycek R, Jelinek M, Kokourek T, et al. Thin organic layers prepared by MAPLE for gas sensor application. Thin Solid Films. 2006;495:308–11.

    Article  CAS  ADS  Google Scholar 

  30. Jelinek M, Cristescu R, Mihailescu IN, Chrisey DB, et al. Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Appl Surf Sci. 2007;253:7755–60.

    Article  CAS  ADS  Google Scholar 

  31. Gyorgy E, Axente E, Mihailescu IN, Predoi D, Ciuca S, Neamtu J. Creatinine biomaterial thin films grown by laser techniques. J Mater Sci. 2008;19:1335–9.

    CAS  Google Scholar 

  32. Cristescu R, Mihailescu IN, Stamatin I, Doraiswamy A, Narayan RJ, Westwood G, et al. Thin films of polymer mimics of cross-linking mussel adhesive proteins deposited by matrix assisted pulsed laser evaporation. Appl Surf Sci. 2009;255:5496–8.

    Article  CAS  ADS  Google Scholar 

  33. Klepetsanis KP, Koutsoukos PG, Chitanu GC, Carpov A. Application of water soluble polymers. In: Amjad Z, editors. Acs Symposium Series, New York; 1998. p. 117.

  34. Bouropoulos K, Bouropoulos N, Melekos M, Koutsoukos PG, Chitanu GC, Anghelescu-Dogaru AG, et al. The inhibition of calcium oxalate monohydrate crystal growth by maleic acid copolymers. J Urol. 1998;159:1755–61.

    Article  CAS  PubMed  Google Scholar 

  35. Piticescu RM, Chitanu GC, Popescu ML, Lojkowski W, Opalinska A, Strachowski T. New hydroxyapatite based nanomaterials for potential use in medicine. Ann Transpl. 2004;9:20–5.

    Google Scholar 

  36. Piticescu RM, Chitanu GC, Albulescu M, Giurginca M, Popescu ML, Lojkowski W. Hybrid HAp-maleic anhydride copolymer nanocomposites obtained by in situ functionalisation. Solid State Phenomena. 2005;106:47–56.

    Google Scholar 

  37. Negroiu G, Piticescu RM, Chitanu GC, Mihailescu IN, Zdrentu L, Miroiu M. Biocompatibility evaluation of a novel hydroxyapatite-polymer coating for medical implants (in vitro tests). J Mater Sci. 2008;19:1537–44.

    CAS  Google Scholar 

  38. Chitanu GC, Popescu I, Carpov A. Synthesis and characterisation of maleic anhidryde copolimer and their derivatives. Addition polimerization-literature survey. Rev Roum Chim. 2005;50:589–99.

    CAS  Google Scholar 

  39. Chitanu GC, Popescu I, Carpov A. Synthesis and characterization of maleic anhydridecopolymers and their derivatives. New data on the copolymerization of maleic anhydride with vinyl acetate. Rev Roum Chim. 2006;51:915–29.

    Google Scholar 

  40. Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, et al. Role of vinculin in regulating focal adhesion turnover. J Cell Biol. 2006;85:487–500.

    Article  CAS  PubMed  Google Scholar 

  41. Lim JY, Dreiss AD, Zhiyi Z, Hansen JC, Siedlecki CA, Hengstebeck RW, et al. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials. 2007;28:1787–97.

    Article  CAS  PubMed  Google Scholar 

  42. Scholzen T, Gerde J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez-Mcquire R, Chane-Ching J-Y, Vignaud E, Lebugle A, Mann S. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. J Mater Chem. 2004;14:2277–81.

    Article  CAS  Google Scholar 

  44. Hennessy KM, Pollot BE, Clem WC, Phipps MC, Sawyer AA, Culpepper BK, et al. The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials. 2009;30:1898–909.

    Article  CAS  PubMed  Google Scholar 

  45. Murphy MB, Hartgerink JD, Goepferich A, Mikos AG. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules. 2007;8:2237–43.

    Article  CAS  PubMed  Google Scholar 

  46. Suratwala SJ, Cho SK, Van Raalte JJ, Park SH, Seo SW, Chang SS, et al. Enhancement of periprosthetic bone quality with topical hydroxyapatite-bisphosphonate composite. J Bone Joint Surg Am. 2008;90:2189–96.

    Article  PubMed  Google Scholar 

  47. Schneiders W, Reinstorf A, Biewener A, Serra A, Grass R, Kinscher M, et al. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res. 2009;27:15–21.

    Article  CAS  PubMed  Google Scholar 

  48. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180–92.

    Article  CAS  PubMed  Google Scholar 

  49. Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 2001;7:89–99.

    Article  CAS  PubMed  Google Scholar 

  50. Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Ann Rev Pharmacol Toxicol. 2002;49:283–323.

    Article  Google Scholar 

  51. Lampin M, Wararocquier-Clerout R, Legris C, Degrange M, Sigot-Luizard MF. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36:99–108 .

    Article  CAS  PubMed  Google Scholar 

  52. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  CAS  PubMed  Google Scholar 

  53. Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials. 2004;25:5947–54.

    Article  CAS  PubMed  Google Scholar 

  54. Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Randalski RJ, et al. The effect of surface chemistry modification of titanium alloy on signaling pathways in human osteoblasts. Biomaterials. 2005;26:7579–86.

    Article  CAS  PubMed  Google Scholar 

  55. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science. 1995;268:233–9.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Program Research for Excellence Grant no. 46/2005-2008. The authors thank to Dr. Roxana Mustata for contribution to the preparation of fluorescence microscopy figures and to Emilia Ardelean for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Negroiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sima, L.E., Filimon, A., Piticescu, R.M. et al. Specific biofunctional performances of the hydroxyapatite–sodium maleate copolymer hybrid coating nanostructures evaluated by in vitro studies. J Mater Sci: Mater Med 20, 2305–2316 (2009). https://doi.org/10.1007/s10856-009-3800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3800-7

Keywords

Navigation