Skip to main content
Log in

Evaluation of cell compatibility of surfaces patterned with hydroxyapatite nanopowders on Ti surfaces

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) is a widely used biomaterial for coatings on prostheses, which is used to repair, replace and restore the function of traumatized or diseased bone. In the present study, template-assisted electrohydrodynamic atomization (TAEA) was used to pattern Ti surfaces (convex, concave and flat) with different HA nanoparticles, in order to evaluate the cellular responses. A comparison of biocompatibility between surfaces coated with locally prepared (SL) and commercially available HA nanopowders was carried out. The cytotoxicity and cellular responses to these substrates (i.e., cell adhesion, morphology and proliferation) were evaluated using human osteoblast-like cells (HOS) in vitro. The results demonstrate that Ti surfaces coated with HA (SL) and commercial HA supported HOS cell attachment and proliferation without eliciting any deleterious substances. Moreover, retention of cell viability and morphology of osteoblast-like cells were observed once cells were in contact with the surfaces and were comparable to that of the tissue culture control. Interestingly, cells attached to HA (SL) elicited a better response. Proliferation of cells on convex surfaces was relatively higher in comparison to that of the concave and flat surfaces, which could be due to increased surface area of the HA (SL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pezzotti G, Asmus S M F, Ferroni L P and Miki S 2002 J. Mater. Sci.: Mater. Med. 13 783

    CAS  Google Scholar 

  2. Mayr-Wohlfart U, Fiedler J, Gunthur K P, Puhl W and Kessler S 2001 J. Biomed. Mater. Res. 57 132

    Article  CAS  Google Scholar 

  3. Manjubala I, Sivakumar M, Sureshkumar R V and Sastry T P 2002 J. Biomed. Mater. Res. 63 200

    Article  CAS  Google Scholar 

  4. Szpalski M and Gunzburg R 2002 Orthopaedics 25 601

    Article  Google Scholar 

  5. Le Gerros R Z and Le Geros J P (eds) 1998 Effect of variation in Ca:P ratio on cellular response of primary human osteoblast-like cells to hydroxyapatite-based ceramics (New York: World Scientific Publishing)

  6. Dalby M J, Di-Silvio L, Harper E J and Bonfield W 2001 Biomaterials 22 1739

    Article  CAS  Google Scholar 

  7. Anselme K and Bigerelle M 2011 Int. Mater. Rev. 56 243

    Article  CAS  Google Scholar 

  8. Bigerelle M and Anselme K 2005 Acta Biomaterialia 1 211

    Article  Google Scholar 

  9. Meyle J, Wolburg H and Von Recum A F 1993 J. Biomater. Appl. 7 362

    Article  CAS  Google Scholar 

  10. Herath H M T U, Di Silvio L and Evans J R G 2015 J. Mater. Sci. Eng. C 57 363

    Article  CAS  Google Scholar 

  11. Kuroda K and Okido M 2012 Bioinorg. Chem. Appl. 2012 730693

  12. Li X, Koller G and Huang J 2010 J. Royal Soc. Interface 7 189

    Article  CAS  Google Scholar 

  13. Wijesinghe W P S L, Mantilaka M M M G P G, Premalal E V A, Herath H M T U, Mahalingam S, Edirisinghe M et al 2014 Mater. Sci. Eng. C 42 83

    Article  CAS  Google Scholar 

  14. Wijesinghe W P S L, Mantilaka M M M G P G, Senarathna C K G, Herath H M T U, Premachandra T N and Ranasinghe C S K 2016 Mater. Sci. Eng. C 63 172

  15. Ahmed Z, Huang J, Edirisinghe M J, Jayasinghe S N, Best S M and Bonfield W 2006 J. Biomed. Nanotechnol. 2 201

    Article  Google Scholar 

  16. Nithyanandan A, Mahalingam S, Huang J, Rehman S, Draper E and Edirisinghe M 2014 Bioinspir. Biomim. Nan. 7 59

    Google Scholar 

  17. Clifford C J and Downes S A 1996 J. Mater. Sci.: Mater. Med. 7 637

    Article  CAS  Google Scholar 

  18. Dias N, Nicolau A, Carvalho G A, Mota M and Lima N 1999 J. Basic Microbiol. 39 103

    Article  CAS  Google Scholar 

  19. Hamid R, Rotshteyn Y, Rabadi L, Parikh R and Bullock P 2004 Toxicol. In Vitro 18 703

    Article  CAS  Google Scholar 

  20. Mosmann T 1983 J. Immunol. Methods 65 55

    Article  CAS  Google Scholar 

  21. Nakayama G R, Caton M C, Nova M P and Parandoosh Z 1997 J. Immunol. Methods 204 205

    Article  CAS  Google Scholar 

  22. Nociari M M, Shalev A, Benias P and Russo C 1998 J. Immunol. Methods 213 157

    Article  CAS  Google Scholar 

  23. O’Brien J, Wilson I, Orton T and Pognan F 2000 Eur. J. Biochem. 267 5421

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Council, Sri Lanka [NRC-15-027] and The Royal Society of UK, International exchanges Scheme 2013/R2, UK. We greatly acknowledge the support extended by Prof M Edirisinghe and Dr A Nithyanandan of the Biomaterial Processing Laboratory, University College London (UK) in producing TAEA surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H M T U Herath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premachandra, T.N., Wijesinghe, W.P.S.L., Rajapakse, R.P.V.J. et al. Evaluation of cell compatibility of surfaces patterned with hydroxyapatite nanopowders on Ti surfaces. Bull Mater Sci 44, 102 (2021). https://doi.org/10.1007/s12034-021-02373-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02373-x

Keywords

Navigation