Skip to main content

Advertisement

Log in

Effect of CaCl2 hydrothermal treatment on the bone bond strength and osteoconductivity of Ti–0.5Pt and Ti–6Al–4V–0.5Pt alloy implants

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To achieve osteoconductivity, Ti–0.5Pt and Ti–6Al–4V–0.5Pt alloys were hydrothermally treated at 200°C in 10 mmol/l CaCl2 aqueous solution for 24 h (HT-treatment). We conducted histological investigations of the HT-treated materials by using Wistar strain rats (SD rats) to evaluate the usefulness of the treatment. To measure the bone bond strength, the specimens were implanted in the tibia of SD rats, and a pull-out test was conducted. From the early postoperative stages, direct bone contact was obtained for the HT-treated implants. Within 1–4 weeks of implantation, the bone contact ratios and bone bond strengths of the HT-treated implants were higher than those of the non-treated implants. The Ti–0.5Pt and Ti–6Al–4V–0.5Pt alloys with HT-treatment showed the potential to develop a new implant with a high bone bond strength and rapid osteoconduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. LeGeros RZ, Craig RG. Strategies to affect bone remodeling: osteointegration. J Bone Min Res. 1993;8:583–96.

    Article  Google Scholar 

  2. Daculsi G, LeGeros RZ, Deudon C. Scanning and transmission electron microscopy, and electron probe analysis of the interface between implants and host bone. Scan Micr. 1990;4:309–14.

    CAS  Google Scholar 

  3. Hirai H, Okumura A, Goto M, Katsuki T. Histologic study of the bone adjacent to titanium bone screws used for mandibular fracture treatment. J Oral Maxillofac Surg. 2001;59:531–7. doi:10.1053/joms.2001.22686.

    Article  CAS  PubMed  Google Scholar 

  4. Lum LB, Beirne OR, Curtis DA. Histlogical evaluation of HA-coated vs. uncoated titanium blade implants in delayed and immediately loaded applications. Int J Oral Maxillofac Implants. 1991;6:456–62.

    CAS  PubMed  Google Scholar 

  5. Szmukler-Moncler S, Salama H, Reingewirta Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Master Res. 1998;43:192–203. doi:10.1002/(SICI)1097-4636(199822)43:2<192::AID-JBM14>3.0.CO;2-K.

    Article  CAS  Google Scholar 

  6. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510. doi:10.1111/j.1151-2916.1991.tb07132.x.

    Article  CAS  Google Scholar 

  7. Kokubo T. A/W glass-ceramic: processing and properties. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: World Scientific; 1993. p. 75–88.

    Google Scholar 

  8. Neo M, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. J Biomed Mater Res. 1993;27:999–1066. doi:10.1002/jbm.820270805.

    Article  CAS  PubMed  Google Scholar 

  9. Kokubo T, Miyaji F, Kim HM, Nakamura T. Spontaneous apatite formation on chemically surface treated Ti. J Am Ceram Soc. 1996;79:1127–9. doi:10.1111/j.1151-2916.1996.tb08561.x.

    Article  CAS  Google Scholar 

  10. Kim HM, Miyaji F, Kokubo T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci: Mater Med. 1997;8:341–7. doi:10.1023/A:1018524731409.

    Article  CAS  Google Scholar 

  11. Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. The effect of heat treatrment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1990;20:491–500. doi:10.1016/S0142-9612(98)90203-4.

    Article  Google Scholar 

  12. Nishiguchi S, Kato H, Fujita H, Kim HM, Miyaji F, Kokubo T, et al. Enhancement of bone-bonding strengths of titanium alloy implants by alkali and heat treatments. J Biomed Mater Res Appl Biomater. 1999;48:689–96. doi:10.1002/(SICI)1097-4636(1999)48:5<689::AID-JBM13>3.0.CO;2-C.

    Article  CAS  Google Scholar 

  13. Nakagawa M, Zhang L, Udoh K, Matsuya S, Ishikawa K. Effect of hydrothermal treatment with CaCl2 solution on surface property and cell response of titanium implants. J Mater Sci: Mater Med. 2005;16:985–91. doi:10.1007/s10856-005-4753-0.

    Article  CAS  Google Scholar 

  14. Kim HM, Miyaji F, Kokubo T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci: Mater Med. 1997;8:341–7. doi:10.1023/A:1018524731409.

    Article  CAS  Google Scholar 

  15. Toumelin-chemla F, Rouelle F, Burdairon G. Corrosive properties of fluoride-containing odontologic gels against titanium. J Dentistry. 1996;24:109–15. doi:10.1016/0300-5712(95)00033-X.

    Article  CAS  Google Scholar 

  16. Strietzel R, Hosch A, Kalbfleisch H, Buch D. In vitro corrosion of titanium. Biomaterials. 1998;19:1495–9. doi:10.1016/S0142-9612(98)00065-9.

    Article  CAS  PubMed  Google Scholar 

  17. Nakagawa M, Matsuya S, Shiraishi T, Ohta M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res. 1999;78:1568–72. doi:10.1177/00220345990780091201.

    Article  CAS  PubMed  Google Scholar 

  18. Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J, Nagimo M. Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials. 2003;24:2113–20. doi:10.1016/S0142-9612(02)00642-7.

    Article  CAS  PubMed  Google Scholar 

  19. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23:1995–2002. doi:10.1016/S0142-9612(01)00328-3.

    Article  CAS  PubMed  Google Scholar 

  20. Huang HH. Effect of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23:59–63. doi:10.1016/S0142-9612(01)00079-5.

    Article  CAS  PubMed  Google Scholar 

  21. Matono Y, Nakagawa M, Matsuya S, Ishikawa K, Terada Y. Corrosion behavior of pure titanium and titanium alloys in various concentrations of acidulated phosphate fluoride (APF) solutions. Dent Mater J. 2006;25:104–12.

    Article  CAS  PubMed  Google Scholar 

  22. Nakagawa M, Matono Y, Matsuya S, Udoh K, Ishikawa K. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environment. Biomaterials. 2005;26:2239–46. doi:10.1016/j.biomaterials.2004.07.022.

    Article  CAS  PubMed  Google Scholar 

  23. Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride containing solutions. Dent Mater J. 2001;20:305–14.

    CAS  PubMed  Google Scholar 

  24. Nakagawa M, Matsuya S, Udoh K. Effect of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dent Mater J. 2002;21:83–92.

    CAS  PubMed  Google Scholar 

  25. Yamazoe J, Nakagawa M, Matono Y, Takeuchi A, Ishikawa K. The development of Ti alloys for dental implant with high corrosion resistance and mechanical strength. J Dent Mat. 2007;26:260–7. doi:10.4012/dmj.26.260.

    Article  CAS  Google Scholar 

  26. Ayukawa Y, Takeshita F, Inoue T, Yoshinari M, Ohtsuka Y, Murai K, et al. An ultrastructural study of the bone-titanium interface using pure titanium-coated plastic and titanium rod implants. Acta Histochemica et Cytochemica. 1996;29:234–54.

    Google Scholar 

  27. Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants. Clin Oral Implant Res. 2004;15:346–50. doi:10.1046/j.1600-0501.2003.01015.x.

    Article  Google Scholar 

  28. Mano T, Ueyama Y, Ishikawa K, Matsumura T, Suzuki K. Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method. Biomaterials. 2002;23:1931–6. doi:10.1016/S0142-9612(01)00319-2.

    Article  CAS  PubMed  Google Scholar 

  29. Takadama H, Kim HM, Kokubo T, Nakamura T. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J Biomed Mater Res. 2001;55:185–93. doi:10.1002/1097-4636(200105)55:2<185::AID-JBM1005>3.0.CO;2-P.

    Article  CAS  PubMed  Google Scholar 

  30. Kim HM, Himeno T, Kawashita M, Lee JH, Kokubo T, Nakamura T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J Biomed Mater Res. 2003;67:1305–9. doi:10.1002/jbm.a.20039.

    Article  CAS  Google Scholar 

  31. Gottlander M, Albrektsson T. Histomorphometric studies of hydroxyapatite-coated and uncoated CP titanium threaded implants in bone. Int J Oral Maxilofac Implants. 1991;6:399–404.

    CAS  Google Scholar 

  32. Matsui Y, Ohno K, Michi KI, Yamagata K. Experimental study of high-viscosity flame-sprayed hydroxyapatite coated and noncoated titanium implants. Int J Oral Maxillofac Implants. 1994;9:397–404.

    Google Scholar 

  33. Nishiguchi S, Kato H, Fujita H, Oka M, Kim HM, Kokubo T, et al. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials. 2001;22:2525–33. doi:10.1016/S0142-9612(00)00443-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in Aid for Scientific Research (20592301) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, M., Yamazoe, J. Effect of CaCl2 hydrothermal treatment on the bone bond strength and osteoconductivity of Ti–0.5Pt and Ti–6Al–4V–0.5Pt alloy implants. J Mater Sci: Mater Med 20, 2295–2303 (2009). https://doi.org/10.1007/s10856-009-3799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3799-9

Keywords

Navigation