Skip to main content

Advertisement

Log in

Calcification capacity of porous pHEMA–TiO2 composite hydrogels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Many investigations have been attempted to promote calcification of synthetic polymers for applications as orthopaedic and dental implants. In this study, novel titanium dioxide (TiO2) reinforced porous poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels were synthesized. Calcification capacity of the composite polymers was examined using light microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy after incubation of the materials in a simulated body fluid up to 53 days. Mechanical strength, porosity and in vitro cytotoxicity were also investigated. Calcification capacity of porous pHEMA was significantly enhanced by the addition of TiO2 particulates. Infiltration of calcium phosphate, up to 1000 μm, was observed. The diffusion capacity of calcium ions was affected by the porosity and the interconnectivity of pores in the hydrogel polymers which were influenced by the presence of TiO2 and the monomer concentration. Cell viability tests indicated that porous hydrogels containing 7.5% TiO2 were not toxic to 3T3 fibroblast cells. These results demonstrate that incorporating TiO2 nanoparticulates can promote enhanced formation of calcium phosphate whilst maintaining the porosity and interconnectivity of the hydrogel polymers and would be very useful for the development of orthopaedic tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Refojo MF. Polymers in ophthalmology: an overview. In: Williams DF, editor. Biocompatibility in clinical practice, vol. II. Boca Raton, FL: CRC Press; 1982. p. 3.

    Google Scholar 

  2. Mack EJ, Okano T, Kim SW. Biomedical applications of poly(2-hydroxyethyl methacrylate) and its copolymers. In: Peppas NA, editor. Hydrogels in medicine and pharmacy, vol. II. Boca Raton, FL: CRC Press; 1987. p. 65.

    Google Scholar 

  3. Hick CR, Crawford G, Chirla TV, Wiffen S, Vijayasekeran S, Lou X, et al. Development and clinical assessment of an artificial cornea. Prog Retin Eye Res. 2000;19:149–70. doi:10.1016/S1350-9462(99)00013-0.

    Article  Google Scholar 

  4. Hicks CR, Morrison D, Lou X, Crawford GJ, Gadjatsy A, Constable IJ. Orbit implants: potential new directions. Expert Rev Med Devices. 2006;3:805–15. doi:10.1586/17434440.3.6.805.

    Article  PubMed  Google Scholar 

  5. Calnan JS, Pflug JJ, Chhabra AS, Raghupati N. Clinical and experimental studies of polyhydroxyethyl methacrylate gel (“Hydron”) for reconstructive surgery. Br J Plast Surg. 1971;24:113–24. doi:10.1016/S0007-1226(71)80029-2.

    Article  CAS  PubMed  Google Scholar 

  6. Tripathi RC, Tripathi BJ, Silverman RA, Rao GN. Contact lens deposits and spoilage: identification and management. Int Ophthalmol Clin. 1991;31:91–120. doi:10.1097/00004397-199103120-00012.

    Article  CAS  PubMed  Google Scholar 

  7. Bowers RWJ, Tighe BJ. Studies in the ocular compatibility of hydrogels: a review of the clinical manifestations of spoilation. Biomaterials. 1987;8:83–8. doi:10.1016/0142-9612(87)90094-9.

    Article  CAS  PubMed  Google Scholar 

  8. Lou X, Vijayasekaran S, Sugiharti R, Robertson T. Morphological and topographic effect on calcification tendency of pHEMA hydrogels. Biomaterials. 2005;26:5808–17. doi:10.1016/j.biomaterials.2005.02.034.

    Article  CAS  PubMed  Google Scholar 

  9. Chirila TV, Zainuddin. Calcification of synthetic polymers functionalized with negatively ionizable groups: a critical review. React Funct Polym. 2007;67:165–72. doi:10.1016/j.reactfunctpolym.2006.10.008.

    Article  CAS  Google Scholar 

  10. Chirila TV, Zainuddin, Hill DJT, Whittaker AK, Kemp A. Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels. Acta Biomater. 2007;3:95–102. doi:10.1016/j.actbio.2006.07.011.

    Article  CAS  PubMed  Google Scholar 

  11. Yokogawa Y, Reyes JP, Mucalo MR, Toriyama M, Kawamoto Y, Suzuki T, et al. Growth of calcium phosphate on phosphorylated chitin fibres. J Mater Sci: Mater Med. 1997;8:407–12. doi:10.1023/A:1018549404092.

    Article  CAS  Google Scholar 

  12. Crawford GJ, Hicks CR, Lou X, Vijayasekaran S, Tan D, Chirila TV, et al. Ophthalmology. 2002;109:883. doi:10.1016/S0161-6420(02)00958-2.

    Article  PubMed  Google Scholar 

  13. Chirila TV, Hicks CR, Dalton PD, Vijayasekaran S, Lou X, Hong Y, et al. Artificial cornea. Prog Polym Sci. 1998;23:447–73. doi:10.1016/S0079-6700(97)00036-1.

    Article  CAS  Google Scholar 

  14. Chirila TV, Constable IJ, Crawford GJ, Vijayasekaran S, Thompson DE, Chen YC, et al. Poly(2-hydroxyethyl methacrylate) sponges as implant materials: in vivo and in vitro evaluation of cellular invasion. Biomaterials. 1993;14:26–38. doi:10.1016/0142-9612(93)90072-A.

    Article  CAS  PubMed  Google Scholar 

  15. Webster TJ, Savaiano JK. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites. Biomaterials. 2004;25:1205–13. doi:10.1016/j.biomaterials.2003.08.012.

    Article  PubMed  Google Scholar 

  16. Liu HN, Slamovich EB, Webster TJ. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res A. 2006;78A:798–807. doi:10.1002/jbm.a.30734.

    Article  CAS  Google Scholar 

  17. Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, et al. Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc. 1994;77:2805–8. doi:10.1111/j.1151-2916.1994.tb04508.x.

    Article  CAS  Google Scholar 

  18. Lou X, Munro S, Wang S. Drug release characteristics of phase separation pHEMA sponge materials. Biomaterials. 2004;25:5071–80. doi:10.1016/j.biomaterials.2004.01.058.

    Article  CAS  PubMed  Google Scholar 

  19. Lou X, Wang S, Tan SY. Mathematics-aided quantitative analysis of diffusion characteristics of pHEMA sponge hydrogels. Asia-Pac J Chem Eng. 2007;2:609–17. doi:10.1002/apj.62.

    Article  CAS  Google Scholar 

  20. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2007;27:2907–15. doi:10.1016/j.biomaterials.2006.01.017.

    Article  Google Scholar 

  21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4.

    Article  CAS  PubMed  Google Scholar 

  22. Hicks CR, Crawford GJ, Lou X, Tan DT, Snibson GR, Sutton G, et al. Corneal replacement using a synthetic hydrogel cornea, AlphaCorT: device, preliminary outcomes and complications. Eye. 2003;17:385–92. doi:10.1038/sj.eye.6700333.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Australian Research Council Discovery Project Grant (DP0557148). We thank Dr Choo-May Lai of Lions Eye Institute Perth for technical assistance in cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zheng, YF. & Lou, X. Calcification capacity of porous pHEMA–TiO2 composite hydrogels. J Mater Sci: Mater Med 20, 2215–2222 (2009). https://doi.org/10.1007/s10856-009-3793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3793-2

Keywords

Navigation