Skip to main content

Advertisement

Log in

Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glass–ceramic scaffolds mimicking the structure of cancellous bone were produced via sponge replication technique by using a polyurethane foam as template and glass powder below 30 μm as inorganic phase. Specifically, a SiO2-based glass of complex composition and its corresponding P2O5-based “specular” glass were used as materials for scaffolding. The polymeric sponge was thermally removed and the glass powders were sintered to obtain a replica of the template structure. The scaffolds were investigated and compared from a structural, morphological and mechanical viewpoint by assessing their crystalline phases, volumetric shrinkage, pores content and interconnection, mechanical strength. In addition, the scaffolds were soaked in acellular simulated body fluid to investigate their in vitro behaviour. The produced scaffolds have a great potential for bone reconstructive surgery because their features, such as shape, strength, bioactivity and bioresorption, can be easily tailored according to the end use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hulbert SF, Hench LL, Forbes D, Bowman LS. History of bioceramics. Ceram Int. 1982;8:131–40.

    Article  CAS  Google Scholar 

  2. Hench LL. Bioceramics and the origin of life. J Biomed Mater Res. 1989;23:685–703.

    Article  CAS  PubMed  Google Scholar 

  3. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  CAS  Google Scholar 

  4. Schlickewei W, Schlickewei S. The use of bone substitutes in the treatment of bone defects – The clinical view and history. Macromol Symp. 2007;253:10–23.

    Article  CAS  Google Scholar 

  5. Ozawa N, Negami S, Odaka T, Morii T, Koshino T. Histological observations on tissue reaction of the rat calcaneal tendon to sintered hydroxyapatite. J Mater Sci Lett. 1989;8:869–71.

    Article  CAS  Google Scholar 

  6. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.

    Article  CAS  PubMed  Google Scholar 

  7. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci: Mater Med. 2003;14:201–9.

    Article  CAS  Google Scholar 

  8. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Hydroxyapatite fiber reinforced poly(a-hydroxy ester) foams for bone regeneration. Biomaterials. 1998;19:1935–43.

    Article  CAS  PubMed  Google Scholar 

  9. Xigeng M, Tan DM, Jian L, Yin X, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008;4:638–45.

    Article  CAS  Google Scholar 

  10. Hvid I, Jensen NC, Bunger C, Solund K, Djurhuus JC. Bone mineral assay: its relation to the mechanical strength of cancellous bone. Eng Med. 1985;14:79–83.

    Article  CAS  PubMed  Google Scholar 

  11. Keaveny TM, Wachtel EF, Guo XE, Hayes WC. Mechanical behavior of damaged trabecular bone. J Biomech. 1994;27:1309–18.

    Article  CAS  PubMed  Google Scholar 

  12. Hench LL. The story of Bioglass®. J Mater Sci: Mater Med. 2006;17:967–78.

    Article  CAS  Google Scholar 

  13. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of the ceramic prosthetic materials. J Biomed Mater Res. 1972;5:117–41.

    Article  Google Scholar 

  14. Hench LL, Wilson J. An Introduction to Bioceramics. Singapore: World Scientific; 1993.

    Google Scholar 

  15. Hench LL. Bioactive materials, the potential for tissue regeneration. J Biomed Mater Res. 1998;41:511–8.

    Article  CAS  PubMed  Google Scholar 

  16. Hench LL, West JK. The sol–gel process. Chem Rev. 1990;90:33–72.

    Article  CAS  Google Scholar 

  17. Pereira MM, Clark AE, Hench LL. Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J Biomed Mater Res. 1994;28:693–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sepulveda P, Jones JR, Hench LL. Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res. 2001;58:734–40.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials. 2004;25:3223–32.

    Article  CAS  PubMed  Google Scholar 

  20. Abou Neel EA, Knowles JC. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J Mater Sci: Mater Med. 2008;19:377–86.

    Article  CAS  Google Scholar 

  21. Salih V, Patel A, Knowles JC. Zinc-containing phosphate-based glasses for tissue engineering. Biomed Mater. 2007;2:11–20.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Uo M, Mizuno M, Kuboki Y, Makishima A, Watari F. Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials. 1998;19:2277–84.

    Article  CAS  PubMed  Google Scholar 

  23. Bitar M, Salih V, Mudera V, Knowles JC, Lewis MP. Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials. 2004;25:2283–92.

    Article  CAS  PubMed  Google Scholar 

  24. Hutmacher DW. Polymeric scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  25. Vitale-Brovarone C, Verné E, Robiglio L, Appendino P, Bassi F, Martinasso G, et al. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 2007;3:199–208.

    Article  CAS  PubMed  Google Scholar 

  26. Vitale-Brovarone C, Miola M, Balagna C, Verné E. 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J. 2007;137:129–36.

    Article  CAS  Google Scholar 

  27. Vitale-Brovarone C, Baino F, Verné E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci: Mater Med. 2009;20:643–53.

    Article  CAS  Google Scholar 

  28. Vitale-Brovarone C, Verné E, Robiglio L, Martinasso G, Canuto RA, Muzio G. Biocompatible glass-ceramic materials for bone substitution. J Mater Sci: Mater Med. 2008;19:471–8.

    Article  CAS  Google Scholar 

  29. Vitale-Brovarone C, Bretcanu O, Verné E. Synthesis and characterization of a degradable phosphate glass and its use to produce resorbable scaffolds for bone substitution. J Mater Sci: Mater Med. (2009) (submitted).

  30. Kokubo T, Takadama H. How useful is SBF inpredicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  CAS  PubMed  Google Scholar 

  31. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–1510.

    Article  CAS  Google Scholar 

  33. Rizkalla AS, Jones DW, Clarke DB, Hall GC. Crystallization of experimental bioactive glass compositions. J Biomed Mater Res. 1996;32:119–24.

    Article  CAS  PubMed  Google Scholar 

  34. Kitsugi T, Yamamuro T, Nakamura T, Kotani S, Kokubo T, Takeuchi H. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing. Biomaterials. 1993;14:216–24.

    Article  CAS  PubMed  Google Scholar 

  35. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res. 1994;28:1303–9.

    Article  CAS  PubMed  Google Scholar 

  36. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  37. Vitale-Brovarone C, Baino F, Verné E. Feasibility and tailoring of bioactive glass–ceramic scaffolds with gradient of porosity for bone grafting. J Biomater Appl 2009; doi: 10.1177/0885328208104857.

  38. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.

    Article  CAS  PubMed  Google Scholar 

  39. Vitale-Brovarone C, Verné E, Appendino P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J Mater Sci: Mater Med. 2006;17:1069–78.

    Article  CAS  Google Scholar 

  40. Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem. 1994;56:340–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Regione Piemonte (Ricerca Sanitaria Finalizzata 2008) that funded this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Vitale-Brovarone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale-Brovarone, C., Baino, F., Bretcanu, O. et al. Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties. J Mater Sci: Mater Med 20, 2197–2205 (2009). https://doi.org/10.1007/s10856-009-3788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3788-z

Keywords

Navigation