Skip to main content
Log in

Hyaline cartilage surface study with an environmental scanning electron microscope. An experimental study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To obtain images of the articular surface of fresh osteochondral grafts using an environmental scanning electron microscope (ESEM). To evaluate and compare the main morphological aspects of the chondral surface of the fresh grafts. To develop a validated classification system on the basis of the images obtained via the ESEM. The study was based on osteochondral fragments from the internal condyle of the knee joint of New Zealand rabbits, corresponding to fresh chondral surface. One hundred images were obtained via the ESEM and these were classified by two observers according to a category system. The Kappa index and the corresponding confidence interval (CI) were calculated. Of the samples analysed, 62–72% had an even surface. Among the samples with an uneven surface 17–22% had a hillocky appearance and 12–16% a knobbly appearance. As regards splits, these were not observed in 92–95% of the surfaces; 4–7% showed superficial splits and only 1% deep splits. In 78–82% of cases no lacunae in the surface were observed, while 17–20% showed filled lacunae and only 1–2% presented empty lacunae. The study demonstrates that the ESEM is useful for obtaining and classifying images of osteochondral grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31, 516 knee arthroscopies. Arthroscopy. 1997;13:456–60. doi:10.1016/S0749-8063(97)90124-9.

    CAS  PubMed  Google Scholar 

  2. Arakawa T, Carpenter J, Kita Y, Crowe J. The basis for toxicity of certain cryoprotectants. Cryobiology. 1990;27:401–15. doi:10.1016/0011-2240(90)90017-X.

    Article  CAS  Google Scholar 

  3. Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther. 1998;28:241–51.

    CAS  PubMed  Google Scholar 

  4. LaPrade RF, Botker JC. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy. 2004;20:e69–73.

    PubMed  Google Scholar 

  5. Minas T. Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am J Orthop. 1998;27:739–44.

    CAS  PubMed  Google Scholar 

  6. Coutts RD, Healey RM, Ostrander R, Sah RL, Goomer R, Amiel D. Matrices for cartilage repair. Clin Orthop Relat Res. 2001;391(Suppl):S271–9. doi:10.1097/00003086-200110001-00025.

    Article  PubMed  Google Scholar 

  7. Diduch DR, Jordan LC, Mierisch CM, Balian G. Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy. 2000;16:571–7. doi:10.1053/jars.2000.4827.

    Article  CAS  PubMed  Google Scholar 

  8. Sastre S, Suso S, Segur JM, et al. Cryopreserved and frozen hyaline cartilage study with an environmental scanning electron microscope. An experimental and prospective study. J Rheuma [Epub Ahead, accepted March 2008].

  9. Sastre S. Estudi amb microscopi electrònic de rastreig ambiental de la morfologia de la superfície articular d’empelts osteocondrals. Valoració de dos mètodes de criopreservació. Tesis Doctoral Universidad de Barcelona 2006, Thesis. 2008.

  10. Weakley BS. A Beginner’s handbook in biological transmission Electron Microscopy. 2nd ed. New York.: Churchill Livingstone; 1981. p. 49.

    Google Scholar 

  11. Soeder S, Kuhlmann A, Aigner T. Analysis of protein distribution in cartilage using immunofluorescence and laser confocal scanning microscopy. Methods Mol Med. 2004;101:107–25.

    CAS  PubMed  Google Scholar 

  12. Kubo T, Arai Y, Namie K, Takahashi K, Hojo T, Inoue S, et al. Time-sequential changes in biomechanical and morphological properties of articular cartilage in cryopreserved osteochondral allografting. J Orthop Sci. 2001;6:276–81. doi:10.1007/s007760100047.

    Article  CAS  PubMed  Google Scholar 

  13. Paulsen HU, Thomsen JS, Hougen HP, Mosekilde L. A histomorphometric and scanning electron microscopy study of human condylar cartilage and bone tissue changes in relation to age. Clin Orthod Res. 1999;2:67–78.

    CAS  PubMed  Google Scholar 

  14. Clark JM, Simonian PT. Scanning electron microscopy of “fibrillated” and “malacic” human articular cartilage: technical considerations. Microsc Res Tech. 1997;37:299–313. doi:10.1002/(SICI)1097-0029(19970515)37:4<299::AID-JEMT5>3.0.CO;2-G.

    Article  CAS  PubMed  Google Scholar 

  15. Li B, Marshall D, Roe M, Aspden RM. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat. 1999;195(Pt 1):101–10. doi:10.1046/j.1469-7580.1999.19510101.x.

    Article  PubMed  Google Scholar 

  16. Goodwin DW, Zhu H, Dunn JF. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol. 2000;174:405–9.

    CAS  PubMed  Google Scholar 

  17. Stein H, Levanon D. Articular cartilage of the rabbit knee after synovectomy: a scanning electron microscopy study. J Anat. 1998;192(Pt 3):343–9. doi:10.1046/j.1469-7580.1998.19230343.x.

    Article  PubMed  Google Scholar 

  18. Suso S, Carbonell JA, Segur JM, Manero J, Planell JA. Cartilage appearance using an environmental scanning electron microscope. Cell Preserv Technol. 2004;2:51–4. doi:10.1089/153834404322708754.

    Article  Google Scholar 

  19. Cameron RE, Donald AM. Minimizing sample evaporation in the environmental scanning electron-microscope. J Microscopy-oxford. 1994;193(Part 3):227–37.

    Google Scholar 

  20. Moncrieff DA, Robinson VNE, et al. Charge neutralisation of insulating surfaces in the SEM by gas ionisation. J Phys D Appl Phys. 1978;11:2315–25. doi:10.1088/0022-3727/11/17/002.

    Article  CAS  ADS  Google Scholar 

  21. Danilatos GD. Introduction to the ESEM instrument. Microsc Res Tech. 1993;25:354–61. doi:10.1002/jemt.1070250503.

    Article  CAS  PubMed  Google Scholar 

  22. Manero JM, Gil FJ, Padros E, Planell JA. Applications of environmental scanning electron microscopy (ESEM) in biomaterials field. Microsc Res Tech. 2003;61:469–80. doi:10.1002/jemt.10358.

    Article  CAS  PubMed  Google Scholar 

  23. Bailey. Statistical methods in biology. 2nd ed. London: Hodder and Stoughton; 1981. p. 56–89.

    MATH  Google Scholar 

  24. Williams MA. Quantitative methods in biology. In: Practical methods in electron microscopy, Vol 6, Part II. New York: Elsevier; 1977. p. 15–34.

  25. Jakstys B. Artifacts in sampling specimens for biological electron microscopy. In: Artifacts in biological electron microscopy. New York: Plenum Press; 1988. p. 12–45.

  26. Carbonell JA. Estudio de la morfología de la superficie articular de injertos osteocondrales frescos, congelados y criopreservados empleando un Microscopio Electrónico de Barrido Ambiental. Tesis Doctoral Universidad de Barcelona 2002, Thesis. 2004.

  27. Hong SP, Henderson CN. Articular cartilage surface changes following immobilization of the rat knee joint. A semiquantitative scanning electron-microscopic study. Acta Anat (Basel). 1996;157:27–40. doi:10.1159/000147864.

    Article  CAS  Google Scholar 

  28. Jurvelin J, Kuusela T, Heikkila R, Pelttari A, Kiviranta I, Tammi M, et al. Investigation of articular cartilage surface morphology with a semiquantitative scanning electron microscopic method. Acta Anat (Basel). 1983;116:302–11. doi:10.1159/000145755.

    Article  CAS  Google Scholar 

  29. O’Connor P, Oates K, Gardner DL, Middleton JF, Orford CR, Brereton JD. Low temperature and conventional scanning electron microscopic observations of dog femoral condylar cartilage surface after anterior cruciate ligament division. Ann Rheum Dis. 1985;44:321–7. doi:10.1136/ard.44.5.321.

    Article  PubMed  Google Scholar 

  30. Gardner DL, McGillivray DC. Surface structure of articular cartilage. Historical review. Ann Rheum Dis. 1971;30:10–4. doi:10.1136/ard.30.1.10.

    Article  CAS  PubMed  Google Scholar 

  31. Gardner DL. The influence of microscopic technology on knowledge of cartilage surface structure. Ann Rheum Dis. 1972;31:235–58. doi:10.1136/ard.31.4.235.

    Article  CAS  PubMed  Google Scholar 

  32. Bloebaum RD, Wilson AS. The morphology of the surface of artcular cartilage in adult rats. J Anat. 1980;131:333–46.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thanks the graft from Transplant Service Foundation that has allowed performing this work.

Conflict of interest statement

All authors disclose any financial and personal relationships with other people or organisations that could inappropriately influence (bias) our work. Including employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sastre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastre, S., Suso, S., Segur, J.M. et al. Hyaline cartilage surface study with an environmental scanning electron microscope. An experimental study. J Mater Sci: Mater Med 20, 2181–2187 (2009). https://doi.org/10.1007/s10856-009-3786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3786-1

Keywords

Navigation