Skip to main content
Log in

Cartilage replacement by use of hybrid systems of autologous cells and polyethylene: an experimental study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study used porous polyethylene (PE) as a scaffold in an animal model system. The surface of the scaffolds was either modified with collagen II coating or first functionalized by oxygen plasma treatment and then coated with collagen II. The specimens were inoculated with autologous chondrocytes and transplanted into the concha of guinea pigs. Bare scaffolds were used as controls. Periods of 1, 6, and 12 months after implantation, samples of cells containing specimens and control samples were evaluated microscopically. As a result, the pre-seeded specimens were better integrated into the surrounding tissue than cell-free PE-specimens. Also a weaker immune reaction and an improved cartilage generation could be detected in the pre-seeded specimen. Compared to the other surface modifications, no further improvement of cartilage development was observed in the long term in vivo animal experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin Z, Willers C, Xu J, Zheng MH. The chondrocyte: biology and clinical application. Tissue Eng. 2006;12:1971–4. doi:10.1089/ten.2006.12.1971.

    Article  PubMed  CAS  Google Scholar 

  2. Praveen J, Patel MA, Rees HC, Olver JM. Fibrovascularization of porous polyethylene orbital floor implants in humans. Arch Ophthalmol. 2003;121:400–3.

    Google Scholar 

  3. Romo TIII, Sclafani A, Sabini P. Use of porous high-density polyethylene in revision rhinoplasty and in the platyrrhine nose. Aesthetic Plast Surg. 1998;22:211–21. doi:10.1007/s002669900193.

    Article  PubMed  Google Scholar 

  4. Romo TIII, Sonne J, Choe KS, Sclafani A. Revision rhinoplasty. Facial Plast Surg. 2003;19:299–307. doi:10.1055/s-2004-815649.

    Article  PubMed  Google Scholar 

  5. Nam SB, Bae YC, Kang YS. Analysis of the postoperative outcome in 405 cases of orbital fracture using two synthetic implants. Ann Plast Surg. 2006;56:263–7. doi:10.1097/01.sap.0000199173.73610.bc.

    Article  PubMed  CAS  Google Scholar 

  6. Cui HG, Li HY, Chen YH. Analysis of high density porous polyethylene (Medpor) orbital implant in 266 cases. Zhonghua Zheng Xing Wai Ke Za Zhi. 2006;22:133–5.

    PubMed  Google Scholar 

  7. Carboni A, Cerulli G, Perugini M, Renzi G. Long-term-follow-up of 105 porous polyethylene implants used to correct facial deformity. Eur J Plast Surg. 2002;25:310–4. doi:10.1007/s00238-002-0407-3.

    Article  Google Scholar 

  8. Berghaus A. Implantate für die rekonstruktive Chirurgie der Nase und des Ohres. Laryngorhinootologie. 2007;86:S67–76. doi:10.1055/s-2007-966301.

    Article  Google Scholar 

  9. Blaydon SM, Shepler TR, Neuhaus RW, White WL, Shore JW. The porous polyethylene (Medpor) sperical orbital implant: a retrospective study of 136 cases. Ophthal Plast Reconstr Surg. 2003;19:364–71. doi:10.1097/01.IOP.0000083643.36461.84.

    Article  PubMed  Google Scholar 

  10. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–4. doi:10.1016/S0142-9612(03)00339-9.

    Article  PubMed  CAS  Google Scholar 

  11. Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage structures. Tissue Eng. 2006;12:691–3. doi:10.1089/ten.2006.12.691.

    Article  PubMed  CAS  Google Scholar 

  12. Perka C, Schultz O, Sittinger M, Zippel H. Chondrozytentransplantation in PGLA/Polydioxanon-Vliesen. Orthopade. 2000;29:112–9.

    PubMed  CAS  Google Scholar 

  13. Cao Y, Vacanti MP, Paiqe KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–302. doi:10.1097/00006534-199708000-00001.

    Article  PubMed  CAS  Google Scholar 

  14. Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res. 1998;42:172–81. doi:10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO;2-M.

    Article  PubMed  CAS  Google Scholar 

  15. Lee CR, Grodzinsky, Hsu H-P, Spector M. Effects of a cultured autologous chondrocytes-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J Orthop Res. 2003;21:272–81. doi:10.1016/S0736-0266(02)00153-5.

    Article  PubMed  CAS  Google Scholar 

  16. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, et al. Matrix collagen type and pore size influence behavior of seeded canine Chondrozytes. Biomaterials. 1997;18:769–76. doi:10.1016/S0142-9612(97)00001-X.

    Article  PubMed  CAS  Google Scholar 

  17. Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, et al. Influence of different collagen species on physico chemical properties of crosslinked collagen matrices. Biomaterials. 2004;25:2831–41. doi:10.1016/j.biomaterials.2003.09.066.

    Article  PubMed  CAS  Google Scholar 

  18. Rotter N, Haisch A, Bücheler M. Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol. 2005;262:539–45. doi:10.1007/s00405-004-0866-1.

    Article  PubMed  Google Scholar 

  19. Bryant SJ, Durand KL, Anseth KS. Manipulations in hydrogel chemistry control photoencapsulated chondrocytes behavior and their extracellular matrix production. J Biomed Mater Res. 2003;67A:1430–6. doi:10.1002/jbm.a.20003.

    Article  CAS  Google Scholar 

  20. Baek CH, Ko YJ. Characteristics of tissue-engineered cartilage on macroporous biodegradedable PLGA scoffold. Laryngoscope. 2006;116:1829–34. doi:10.1097/01.mlg.0000233521.49393.0d.

    Article  PubMed  CAS  Google Scholar 

  21. Röpke E, Schön I, Vogel J, Jamali J, Bloching M, Berghaus A. Screening of modified polyethylene surfaces for tissue engineering of chondrocytes. Laryngo-Rhino-Otol. 2007;86:37–43. doi:10.1055/s-2006-945025.

    Article  Google Scholar 

  22. Vats A, Tolley NS, Polak JM, Gough JE. Scaffold and Biomaterials for tissue engineering: a review of clincal applications. Clin Otolaryngol. 2003;28:165–72. doi:10.1046/j.1365-2273.2003.00686.x.

    Article  PubMed  CAS  Google Scholar 

  23. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22:81–91. doi:10.1016/S0945-053X(03)00012-X.

    Article  PubMed  CAS  Google Scholar 

  24. Rickert D, Lendlein A, Peters I, Moses MA, Franke RP. Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview. Eur Arch Otorhinolaryngol. 2006;263:215–22. doi:10.1007/s00405-005-0950-1.

    Article  PubMed  Google Scholar 

  25. Dayss E, Leps G, Meinhardt J, Wutzler A. Biokompatible Polymerschichten. In: Leps G, Kausche H, editors. 40 Jahre Werkstofftechnik. Merseburg; 1999, p. 84.

  26. Harlow E, Lane D. Antibodies: a laboratory manual. New York: Cold Spring Harbour laboratory; 1988.

    Google Scholar 

  27. Freshney RI. Culture of animal cells. A manual of basic technique. 2nd ed. Berlin, New York: de Gruyter; 1990.

    Google Scholar 

  28. Romeis B. Mikroskopische Technik. 17th ed. München: Urban und Schwarzenberg; 1989.

    Google Scholar 

  29. Custers RJ, Creemers LB, Verbout AJ, van Rijen MH, Dhert WJ, Saris DB. Reliabaility, reproducibility and variability of the traditional Histologic/Histochemical Grading System vs the new OARSI Osteoarthritis Cartilage Histopathology Assessment System. Osteoarthritis Cartilage. 2007;15:1241–8. doi:10.1016/j.joca.2007.04.017.

    Article  PubMed  CAS  Google Scholar 

  30. Petersen JP, Ueblackker P, Goepfert C, Adamietz P, Baumbach K, Stork A, et al. Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci: Mater Med. 2008;19:2029–38. doi:10.1007/s10856-007-3291-3.

    Article  CAS  Google Scholar 

  31. Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Rep Reg. 2009;17:136–46.

    Article  Google Scholar 

  32. Cenzi R, Farina A, Zuccarino L, Carinci F. Clinical Note Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction. J Craniofac Surg. 2005;16:526–33. doi:10.1097/01.scs.0000168761.46700.dc.

    Article  PubMed  Google Scholar 

  33. Hilborn J, Bjursten LM. A new and evolving paradigm for biocompatibility. J Tissue Eng Regen Med. 2007;1:110–9. doi:10.1002/term.4.

    Article  PubMed  CAS  Google Scholar 

  34. Tigli RS, Gümüsdereioglu M. Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J Mater Sci: Mater Med. 2009;20:699–709. doi:10.1007/s10856-008-3624-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jürgen Vogel from the Department of Bioengineering of the MLU Halle-Wittenberg for performing the surface modification of the PE materials. This project has been funded by ministry of education of Sachsen-Anhalt Grant No. 3308A/0080B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Schoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoen, I., Rahne, T., Markwart, A. et al. Cartilage replacement by use of hybrid systems of autologous cells and polyethylene: an experimental study. J Mater Sci: Mater Med 20, 2145–2154 (2009). https://doi.org/10.1007/s10856-009-3775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3775-4

Keywords

Navigation