Skip to main content

Advertisement

Log in

Evaluation of bone matrix and demineralized bone matrix incorporated PLGA matrices for bone repair

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the composite matrices prepared using Poly(lactic-co-glycolic acid)- PLGA (85:15) by incorporating human bone matrix (BM) powder or demineralized bone matrix (DBM) powder with the weight ratio of polymer: BM or DBM (75:25) to apply for bone repair. Murine Bone Marrow Stromal Cell (BMSC) attachment was studied with different time points at 30 min, 1 h, 2 h, 4 h, and 6 h for BM/PLGA, DBM/PLGA and PLGA control matrices. All types of matrices were linearly increased the BMSC attachment with the increase of time. Significantly higher number of BMSCs was attached to the both BM/PLGA and DBM/PLGA matrices after 2 h compared to the controls. If BM or DBM is incorporated into biodegradable PLGA matrices and cultured with BMSCs, those composite matrices could be potentially used for bone tissue engineering applications. In addition, particle migration and handling difficulties in DBM powder in clinical applications eliminate using a PLGA matrix. Furthermore, we have observed that DBM/PLGA matrices were structurally stronger compared to the BM/PLGA or control PLGA matrices when they exposed to physiological environment for 72 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Greenwald SA, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg. 2001;83-A:98–103.

    PubMed  Google Scholar 

  2. Iwata H, Sakano S, Itoh T, Bauer T. Demineralized bone matrix and native bone morphogenetic protein in orthopaedic surgery. Clin Orthop Relat Res. 2002;395:99–109. doi:10.1097/00003086-200202000-00010.

    Article  PubMed  Google Scholar 

  3. Vaccaro AR, Chiba K, Heller JG, Patel TC, Thalgott JS, Truumees E, et al. Bone grafting alternatives in spinal surgery. Spine J. 2002;2:206–15. doi:10.1016/S1529-9430(02)00180-8.

    Article  PubMed  Google Scholar 

  4. Price CT. Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine. 2003;28(8):793–8. doi:10.1097/00007632-200304150-00012.

    Article  PubMed  Google Scholar 

  5. Maddox E, Zhan M, Mundy GR, Drohan WN, Burgess WH. Optimizing human deminearlized bone matrix for clinical application. Tissue Eng. 2000;6:441–8. doi:10.1089/107632700418146.

    Article  PubMed  CAS  Google Scholar 

  6. Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J. 2001;1:131–7. doi:10.1016/S1529-9430(01)00011-0.

    Article  PubMed  CAS  Google Scholar 

  7. Mardas N, Kostopoulos L, Stavropoulos A, Karring T. Osteogenesis by guided tissue regeneration and demineralized bone matrix. J Clin Periodontol. 2003;30:176–83. doi:10.1034/j.1600-051X.2003.20031.x.

    Article  PubMed  CAS  Google Scholar 

  8. Babbush CA. Histologic evaluation of human biopsies after dental augmentation with a demineralized bone matrix putty. Implant Dent. 2003;12(4):325–32. doi:10.1097/01.ID.0000095466.18042.31.

    Article  PubMed  Google Scholar 

  9. Glowacki J, Kaban LB, Murray JE, Folkman J, Mulliken JB. Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet. 1981;1(8227):959–62. doi:10.1016/S0140-6736(81)91730-X.

    Article  PubMed  CAS  Google Scholar 

  10. Mulliken JB, Glowacki J. Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg. 1980;65(5):553–60. doi:10.1097/00006534-198005000-00001.

    Article  PubMed  CAS  Google Scholar 

  11. Urist MR, Dowell TA, Hay PH, Strates BS. Inductive substrates for bone formation. Clin Orthop Relat Res. 1968;59:59. doi:10.1097/00003086-196807000-00005.

    Article  PubMed  CAS  Google Scholar 

  12. Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 2000;6(4):351–9. doi:10.1089/107632700418074.

    Article  PubMed  CAS  Google Scholar 

  13. Urist MR, Silverman BF, Burning K, Dubuc FL, Rosenberg JM. The bone induction principle. Clin Orthop Relat Res. 1967;53:243. doi:10.1097/00003086-196707000-00026.

    Article  PubMed  CAS  Google Scholar 

  14. Reddi AH, Cunningham NS. Recent progress in bone induction by osteogenin, bone morphogenetic proteins: challenges for biomechanical and tissue engineering. J of biomech engi. 1991;113(2):189–90. (1991 May).

    Article  CAS  Google Scholar 

  15. Cordewener F, Schmitz J. The future of biodegradable osteosyntheses. Tissue Eng. 2000;6(4):413–24. doi:10.1089/107632700418119.

    Article  PubMed  CAS  Google Scholar 

  16. Dall’Agnol R, Carvalho MB, Rapoport A, Silva MALG. Induction of osteogenesis by demineralized homologous and xenograft bone matrix. Acta Cir Bras. 2003;18(3):178–82. doi:10.1590/S0102-86502003000300003. serial online.

    Article  Google Scholar 

  17. Toriumi DM, Larrabee WF Jr, Walike JW, Millay DJ, Eisele DW. Demineralized bone. Implant resorption with long-term follow-up. Arch Otolaryngol Head Neck Surg. 1990;116(6):676–80.

    PubMed  CAS  Google Scholar 

  18. Gertzman AA, Hae Sunwoo M. A pilot study evaluating sodium hyaluronate as a carrier for freeze-dried demineralized bone powder. Cell Tissue Bank. 2001;2(2):87–94. doi:10.1023/A:1014398514168.

    Article  PubMed  CAS  Google Scholar 

  19. Cutright DE, Hunsuck EE. fracture reduction using a biodegradable material, polylactic acid. J Oral Surg. 1971;29:393–7.

    PubMed  CAS  Google Scholar 

  20. Vert M, Christel P, Chabort F, Leray J. Biresorbable plastic materials for bone surgery. In: Hastings GW, Ducheyne P, editors. Macromolecular biomaterials. Boca Raton, FL: CRC Press; 1984. p. 120–42.

    Google Scholar 

  21. Gombotz WR, Pettit DK. Biodegradable polymers for protein and peptide drug delivery. Bioconjug Chem. 1995;6:332–51. doi:10.1021/bc00034a002.

    Article  PubMed  CAS  Google Scholar 

  22. Matsumoto A, Matsukawa Y, Suzuki T, Yoshino H. Drug release characteristics of multi-reservoir type microspheres with poly(DL-lactide-co-glycolide) and poly(DL-lactide). J Con Rel. 2005;106:172–80. doi:10.1016/j.jconrel.2005.03.026.

    Article  CAS  Google Scholar 

  23. Yarmush M, Morgan J, editors. Tissue engineering methods and protocols. New Jersey: Humana Press Inc; 1999.

    Google Scholar 

  24. Williams DF, Mort E. Enzyme-accelerated hydrolysis of polyglycolic acid. J Bioeng. 1977;1:231–8.

    PubMed  CAS  Google Scholar 

  25. Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res. 1997;36:1–8. doi:10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P.

    Article  PubMed  CAS  Google Scholar 

  26. Vacanti CA, Kim W, Upon J, Vacanti MP, Mooney D, Schloo B, et al. Tissue-engineered growth of bone and cartilage. Transplant Proc. 1993;25:1019–21.

    PubMed  CAS  Google Scholar 

  27. Mauney JR, Blumberg J, Pirun M, Volloch V, Vunjak-Novakovic G, Kaplan DL. Tissue Eng. 2004;10:81. doi:10.1089/107632704322791727.

    Article  PubMed  CAS  Google Scholar 

  28. Kasten P, Luginbuhl R, van Griensven M, Barkhausen T, Krettek C, Bohner M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24(15):2593–603. doi:10.1016/S0142-9612(03)00062-0.

    Article  PubMed  CAS  Google Scholar 

  29. Han B, Tang B, Nimni ME. Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix. J Orthop Res. 2003;21(4):648–54. doi:10.1016/S0736-0266(03)00005-6.

    Article  PubMed  CAS  Google Scholar 

  30. Ding AG, Schwendeman SP. Determination of water-soluble acid distribution in poly(lactide-co-glycolide). J Pharm Sci. 2004;93(2):322–31. doi:10.1002/jps.10524.

    Article  PubMed  CAS  Google Scholar 

  31. Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48:342–53. doi:10.1002/(SICI)1097-4636(1999)48:3<342::AID-JBM20>3.0.CO;2-7.

    Article  PubMed  CAS  Google Scholar 

  32. Li S, Girod HS, Vert M. Crystalline oligomeric stereocomplex as intermediate compound in racemic poly(DL-lactic acid) degradation. Polym Int. 1994;33:37–41. doi:10.1002/pi.1994.210330105.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The University of Toledo is greatly appreciated by the authors for providing financial support for this research. Authors also would like to acknowledge Dr. Vijay Goel in Bioengineering Department at the University of Toledo for providing freeze-dried bone specimens for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Champa Jayasuriya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champa Jayasuriya, A., Ebraheim, N.A. Evaluation of bone matrix and demineralized bone matrix incorporated PLGA matrices for bone repair. J Mater Sci: Mater Med 20, 1637–1644 (2009). https://doi.org/10.1007/s10856-009-3738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3738-9

Keywords

Navigation