Skip to main content

Advertisement

Log in

Formation of carbonated apatite particles from a supersaturated inorganic blood serum model

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Pathological calcification is common among for instance dialysis patients, and this causes an increase in mortality risk. An elevated serum phosphate concentration among those patients strongly correlates to this increase. In this work investigations of the conditions, composition, crystallinity and morphology of in vitro calcification are performed and related to results from in vivo studies. The study was performed under conditions mimicking physiological ones, i.e. a pH around 7.40, a temperature of 37°C, an ionic strength of 150 mM and ion concentrations close to those in human serum including the effects of elevated phosphate concentrations. The course of precipitation involves an initial precipitate that subsequently re-dissolves to give another precipitate, in accordance with the well-known Ostwald ripening theory. The final bulk precipitate consists of a macroscopically amorphous carbonated apatite. The amorphous apatite is formed from assemblies of spherical particles in the μm range, in turn composed of nano-crystalline needles of about 10 × 100 nm. Even the initially formed precipitate, as well as a small amount of precipitate that occurs on the liquid surface, consist of a carbonated calcium phosphate. The in vitro observed carbonated apatite bears strong resemblance to in vivo cardiovascular calcification known from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hujairi NMA, Afzali B, Goldsmith DJA. Cardiac calcification in renal patients: what we do and don’t know. Am J Kidney Dis. 2004;43:234–43. doi:10.1053/j.ajkd.2003.10.014.

    Article  PubMed  CAS  Google Scholar 

  2. Blancher J, Guerin AP, Pannier B, Marchais SJ, London GM. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension. 2001;38:938–42. doi:10.1161/hy1001.096358.

    Article  Google Scholar 

  3. Yeun JY, Levine RA, Mantadilok V, Kaysen GA. C-reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis. 2000;35:469–76. doi:10.1016/S0272-6386(00)70200-9.

    Article  PubMed  CAS  Google Scholar 

  4. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–17. doi:10.1053/ajkd.1998.v31.pm9531176.

    Article  PubMed  CAS  Google Scholar 

  5. Dorozhkin SV, Dorozhkina EI, Epple M. Precipitation of carbonateapatite from a revised simulated body fluid in the presence of glucose. J Appl Biomat Biomech. 2003;1:200–7.

    CAS  Google Scholar 

  6. Peters F, Epple M. Simulating arterial wall calcification in vitro: biomimetic crystallization of calcium phosphates under controlled conditions. Z Kardiol. 2001;90:81–5. doi:10.1007/s003920170047.

    Article  PubMed  Google Scholar 

  7. Boulet M, Marier JR. Precipitation of calcium phosphates from solutions at near physiological concentrations. Arch Biochem Biophys. 1961;93:157–65. doi:10.1016/0003-9861(61)90329-0.

    Article  CAS  Google Scholar 

  8. Boskey AL, Posner AS. Formation of hydroxyapatite at low supersaturation. J Phys Chem. 1976;80:40–5. doi:10.1021/j100542a009.

    Article  CAS  Google Scholar 

  9. Olsson L-F, Sandin K, Odselius R, Kloo L. In vitro formation of nanocrystalline carbonate apatite---a structural and morphological analogue of atherosclerotic plaques. Eur J Inorg Chem.2007;26:4123–7.doi:10.1002/ejic.200700654.

    Google Scholar 

  10. Sandin K, Kloo L, Odselius R, Olsson L-F. The observation of nano-crystalline calcium phosphate precipitate in a simple supersaturated inorganic blood serum model - composition and morphology. J Appl Biomat Biomech. 2009, in press.

  11. C. Lentner (Ed). Geigy scientific tables 3. Ciba-Geigy: Basle; 1984.

  12. Clase CM, Norman GL, Beecroft ML, Churchill DN. Albumin-corrected calcium and ionized calcium in stable haemodialysis patients. Nephrol Dial Transplant. 2000;15:1841–6. doi:10.1093/ndt/15.11.1841.

    Article  PubMed  CAS  Google Scholar 

  13. Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207. doi:10.1021/ic50131a039.

    Article  CAS  Google Scholar 

  14. Nelson DGA, Williamson BE. Low-temperature laser Raman spectroscopy of synthetic carbonated apatites and dental enamel. Aust J Chem. 1982;35:715–27.

    CAS  Google Scholar 

  15. Fowler BO, Markovic M, Brown WE. Octacalcium phosphate. 3. Infrared and Raman vibrational spectra. Chem Mater. 1993;5:1417–23. doi:10.1021/cm00034a009.

    Article  CAS  Google Scholar 

  16. Nelson DGA, Featherstone JDB. Preparation, analysis and characterization of carbonated-apatites. Calcif Tissue Int. 1982;34:69–81.

    CAS  Google Scholar 

  17. Pritzko W, Rentsch H. Structure refinement with X-ray powder diffraction data for synthetic calcium hydroxyapatite by Rietveld method. Cryst Res Technol. 1985;20:957–60. doi:10.1002/crat.2170200719.

    Article  Google Scholar 

  18. Rössler S, Sewing A, Stölzer M, Born R, Scharnweber D, Dard M, et al. Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature. J Biomed Mater Res. 2003;64A:655–63. doi:10.1002/jbm.a.10330.

    Article  Google Scholar 

  19. JCPDS (The Joint Committee on Powder Diffraction Standards) 2601 Park Lane, Swarthmore, PA; 1974.

  20. Nancollas GH. The involvement of calcium phosphates in biological mineralization and demineralization processes. Pure Appl Chem. 1992;64:1673–8. doi:10.1351/pac199264111673.

    Article  CAS  Google Scholar 

  21. Ostwald W. Studien über die Bildung und Umwandlung fester Körper. Z Phys Chem. 1897;22:289–330.

    CAS  Google Scholar 

  22. Wang HP, Feng XJ, Gou BD, Zhang TL, Xu SJ, Wang K. Effects of LDL, cholesterol, and their oxidized forms on the precipitation kinetics of calcium phosphates. Clin Chem. 2003;49:2027–36. doi:10.1373/clinchem.2003.024513.

    Article  PubMed  CAS  Google Scholar 

  23. Alberius Henning P, Moustiakimov M, Lidin S. Incommensurately modulated cadmium apatites. J Solid State Chem. 2000;150:154–8. doi:10.1006/jssc.1999.8571.

    Article  ADS  Google Scholar 

  24. Becker A, Epple M, Muller KM, Schmitz I. A comparative study of clinically well-characterized human atherosclerotic plaques with histological, chemical, and ultrastructural methods. J Inorg Biochem. 2004;98:2032–8. doi:10.1016/j.jinorgbio.2004.09.006.

    Article  PubMed  CAS  Google Scholar 

  25. Tomazic BB. Physiochemical principles of cardiovascular calcification. Z Kardiol. 2001;90(Suppl 3):68–80. doi:10.1007/s003920170046.

    PubMed  Google Scholar 

  26. Bigi A, Compostella L, Fichera AM, Foresti E, Gazzano M, Ripamonti A, et al. Structural and chemical characterization of inorganic deposits in calcified human mitral valve. J Inorg Biochem. 1988;34:75–82. doi:10.1016/0162-0134(88)85019-0.

    Article  PubMed  CAS  Google Scholar 

  27. Pawlikowski M, Pfitzner R, Wachowiak J. Mineralization (calcification) of coronary arteries. Mater Med Pol. 1994;26:3–8.

    PubMed  CAS  Google Scholar 

  28. Kim H-M, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26:4366–73. doi:10.1016/j.biomaterials.2004.11.022.

    Article  PubMed  CAS  Google Scholar 

  29. Robinson RA. An electron-microscopic study of the crystallite inorganic component of bone and its relationship to the organic matrix. J Bone Jt Surg. 1952;34A:389–436.

    CAS  Google Scholar 

  30. Holt C, van Kemenade MJJM, Harries JE, Nelson LS, Bailey RT, Hukins DWL, et al. Preparation of amorphous calcium-magnesium phosphates at pH 7 and characterization by x-ray absorption and Fourier transform infrared spectroscopy. J Cryst Growth. 1988;92:239–52. doi:10.1016/0022-0248(88)90455-1.

    Article  ADS  CAS  Google Scholar 

  31. Shanahan CM, Cary NRB, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME. Medial localization of mineralization-regulating proteins in association with Mönckeberg’s sclerosis. Circulation. 1999;100:2168.

    PubMed  CAS  Google Scholar 

  32. Moe SM, O’Neill KD, Duan D, Ahmed S, Chen NX, Leapman SB, et al. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int. 2001;61:638–47. doi:10.1046/j.1523-1755.2002.00170.x.

    Article  Google Scholar 

  33. Stability Constants Database; IUPAC, Academic software, 2001.

Download references

Acknowledgements

Hans Hallstadius, former employee at Gambro′s Development Department, is acknowledged for constructing the particle sensor and Andreas Fischer at the Department of Chemistry, Royal Institute of Technology, Stockholm, Sweden, for performing the TGA and X-ray diffraction investigations. This project was supported by a grant from the Swedish Research Council (VR 621-2001-3653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kloo.

Appendix

Appendix

Concentrations were calculated by an in-house program system utilizing known equilibrium constants [33] for the conditions used. These data include complex formation, acid-base equilibrium, and solubility. When necessary, the values were corrected to apply to an ionic strength of 150 mM. The formation of complexes between calcium, phosphate and bicarbonate ions were taken into consideration. H2PO4 (20%) and HPO4 2− (80%) are the dominating forms of orthophosphoric acid at pH 7.4. The other components, H3PO4 and PO4 3− were neglected. In the carbonate system, HCO3 dominates (~95%); the other components are dissolved carbon dioxide (“carbonic acid”) CO2(aq) and the carbonate ion, CO3 2−. Since the concentration of the latter is <0.2 mM, the formation of the complex CaCO3(aq) was neglected. The acid constant pKa2 = 6.7 for the acid-base pair H2PO4 /HPO4 2−. For the hydrogen carbonate system, the values have been obtained by interpolating between ionic strength 0.1 and 0.2 mM resulting in pKa1 = 6.07 for CO2(aq)/HCO3 and pKa2 = 9.75 for HCO3 /CO3 2−. The dissociation constant of water employed was pKw = 13.4. Only the complexes CaHPO4(aq) and CaHCO3 + with complex formation constants, logK, 1.9 and 1.1, respectively, were included.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandin, K., Kloo, L., Nevsten, P. et al. Formation of carbonated apatite particles from a supersaturated inorganic blood serum model. J Mater Sci: Mater Med 20, 1677–1687 (2009). https://doi.org/10.1007/s10856-009-3735-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3735-z

Keywords

Navigation