Skip to main content

Advertisement

Log in

Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel injectable thermosensitive hydrogel (CS–HTCC/α β-GP) was successfully designed and prepared using chitosan (CS), quaternized chitosan (HTCC) and α,β-glycerophosphate (α,β-GP) without any additional chemical stimulus. The gelation point of CS–HTCC/α β-GP can be set at a temperature close to normal body temperature or other temperature above 25°C. The transition process can be controlled by adjusting the weight ratio of CS to HTCC, or different final concentration of α,β-GP. The optimum formulation is (CS + HTCC) (2% w/v), CS/HTCC (5/1 w/w) and α,β-GP 8.33% or 9.09% (w/v), where the sol–gel transition time was 3 min at 37°C. The drug released over 3 h from the CS–HTCC/α,β-GP thermosensitive hydrogel in artificial saliva pH 6.8. In addition, CS–HTCC/α,β-GP thermosensitive hydrogel exhibited stronger antibacterial activity towards two periodontal pathogens (Porphyromonas gingivalis, P.g and Prevotella intermedia, P.i). CS–HTCC/α, β-GP thermosensitive hydrogel was a considerable candidate as a local drug delivery system for periodontal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm. 2008;365:89–99. doi:10.1016/j.ijpharm.2008.08.027.

    Article  PubMed  Google Scholar 

  2. Zhou HY, Chen XG, Kong M, Liu CS, Cha DS, Kennedy JF. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym. 2008;73:265–73. doi:10.1016/j.carbpol.2007.11.026.

    Article  CAS  Google Scholar 

  3. Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and haemostatic potential. J Biomed Mater Res. 1997;34:21–8. doi:10.1002/(SICI)1097-4636(199701)34:1<21::AID-JBM4>3.0.CO;2-P.

    Article  PubMed  CAS  Google Scholar 

  4. Molinaro G, Leroux JC, Damas J, Adam A. Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials. 2002;23:2717–22. doi:10.1016/S0142-9612(02)00004-2.

    Article  PubMed  CAS  Google Scholar 

  5. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1–21. doi:10.1016/j.biotechadv.2007.07.009.

    Article  PubMed  CAS  Google Scholar 

  6. Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnurch A. Synthesis and characterisation of a chitosan-n-acetyl cysteine conjugate. Int J Pharm. 2008;347:79–85. doi:10.1016/j.ijpharm.2007.06.040.

    Article  PubMed  CAS  Google Scholar 

  7. Jumaa M, Furkert FH, Muller BW. A new lipid emulsion formulation with high antimicrobial efficacy using chitosan. Eur J Pharm Biopharm. 2002;53:115–23. doi:10.1016/S0939-6411(01)00191-6.

    Article  PubMed  CAS  Google Scholar 

  8. Kim KW, Thomas RL, Lee C, Park HJ. Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan. J Food Prot. 2003;66:1495.

    PubMed  CAS  Google Scholar 

  9. Lehr C, Bouwstra J, Schacht E, Junginger H. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78:43–8. doi:10.1016/0378-5173(92)90353-4.

    Article  CAS  Google Scholar 

  10. Ma ZW, Zhang YJ, Wang R, Wang QT, Dong GY, Wu ZF. An animal experiment for the regeneration of periodontal defect by application of the dual-release chitosan thermosensitive hydrogel system. Zhonghua kou Qiang Yi Xue Za Zhi. 2008;43:273–7.

    PubMed  CAS  Google Scholar 

  11. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release. 2005;103:609–24. doi:10.1016/j.jconrel.2004.12.019.

    Article  PubMed  CAS  Google Scholar 

  12. Lagarce F, Faisant N, Desfontis JC, Marescaux L, Gautier F, Richard J, et al. Baclofen-loaded microspheres in gel suspensions for intrathecal drug delivery: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2005;61:171–80. doi:10.1016/j.ejpb.2005.04.004.

    Article  PubMed  CAS  Google Scholar 

  13. Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, et al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials. 2004;25:5743–51. doi:10.1016/j.biomaterials.2004.01.051.

    Article  PubMed  CAS  Google Scholar 

  14. Chung H, Go D, Bae J, Jung I, Lee J, Park K. Synthesis and characterization of Pluronic® grafted chitosan copolymer as a novel injectable biomaterial. Curr Appl Phys. 2005;5:485–8. doi:10.1016/j.cap.2005.01.015.

    Article  ADS  Google Scholar 

  15. Ganji F, Abdekhoda M. Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydr Polym. 2008;74:435–41. doi:10.1016/j.carbpol.2008.03.017.

    Article  CAS  Google Scholar 

  16. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21:2155–61. doi:10.1016/S0142-9612(00)00116-2.

    Article  PubMed  CAS  Google Scholar 

  17. Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux JC. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release. 2002;82:373. doi:10.1016/S0168-3659(02)00146-3.

    Article  PubMed  CAS  Google Scholar 

  18. Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–42. doi:10.1016/S0142-9612(99)00011-3.

    Article  PubMed  CAS  Google Scholar 

  19. Sandri G, Rossi S, Bonferoni MC, Ferrari F, Zambito Y, Di Colo G, et al. Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm. 2005;297:146–55.

    PubMed  CAS  Google Scholar 

  20. van Winkelhoff AJ, Herrera Gonzales D, Winkel EG, Dellemijn-Kippuw N, Vandenbroucke-Grauls CM, Sanz M. Antimicrobial resistance in the subgingival microflora in patients with adult periodontitis. A comparison between The Netherlands and Spain. J Clin Periodontol. 2000;27:79–86. doi:10.1034/j.1600-051x.2000.027002079.x.

    Article  PubMed  Google Scholar 

  21. Harrison JW, Svec TA. The beginning of the end of the antibiotic era? Part I. The problem: abuse of the “miracle drugs”. Quintessence Int. 1998;29:151–62.

    PubMed  CAS  Google Scholar 

  22. Harrison JW, Svec TA. The beginning of the end of the antibiotic era ? part ii. Proposed solutions to antibiotic abuse. Quintessence Int. 1998;29:223–9.

    PubMed  CAS  Google Scholar 

  23. Slots J, Pallasch TJ. Dentists’ role in halting antimicrobial resistance. J Dent Res. 1996;75:1338–41. doi:10.1177/00220345960750060201.

    Article  PubMed  CAS  Google Scholar 

  24. Loesche WJ. Antimicrobials in dentistry: with knowledge comes responsibility. J Dent Res. 1996;75:1432–3. doi:10.1177/00220345960750070101.

    Article  PubMed  CAS  Google Scholar 

  25. Sanai Y, Persson GR, Starr JR, Luis HS, Bernardo M, Leitao J, et al. Presence and antibiotic resistance of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens in children. J Clin Periodontol. 2002;29:929–34. doi:10.1034/j.1600-051X.2002.291008.x.

    Article  PubMed  Google Scholar 

  26. Walker CB. The acquisition of antibiotic resistance in the periodontal microflora. Periodontol. 1996;10:79–88. doi:10.1111/j.1600-0757.1996.tb00069.x.

    Article  CAS  Google Scholar 

  27. Chen XG, Zheng L, Wang Z, Lee CY, Park HJ. Molecular affinity and permeability of different molecular weight chitosan membranes. J Agric Food Chem. 2002;50:5915–8. doi:10.1021/jf020151g.

    Article  PubMed  CAS  Google Scholar 

  28. Xu H, Kaar JL, Russell AJ, Wagner WR. Characterizing the modification of surface proteins with poly(ethylene glycol) to interrupt platelet adhesion. Biomaterials. 2006;27:3125–35. doi:10.1016/j.biomaterials.2006.01.012.

    Article  PubMed  CAS  Google Scholar 

  29. Chung YM, Simmons KL, Gutowska A, Jeong B. Sol–gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules. 2002;3:511–6. doi:10.1021/bm0156431.

    Article  PubMed  CAS  Google Scholar 

  30. ISO TR 10271. Bern: printed in Switzerland, (1993).

  31. National Committee for Clinical Laboratory Standards. Methods for antimicrobial susceptibility testing of anaerobic bacteria: approved standard M11–A5. 5th ed. Wayne, PA, USA: National Committee for Clinical Laboratory Standards; 2001.

    Google Scholar 

  32. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard M7–A5. 5th ed. Wayne, PA, USA: National Committee for Clinical Laboratory Standards; 2000.

    Google Scholar 

  33. Jia Z, shen D, Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res. 2001;333:1–6. doi:10.1016/S0008-6215(01)00112-4.

    Article  PubMed  CAS  Google Scholar 

  34. Qin CQ, Xiao L, DU YM, Shi XW, Chen JW. A new cross-linked quaternized-chitosan resin as the support of borohydride reducing agent. Reactive Funct Polymers. 2002;50:165–71. doi:10.1016/S1381-5148(01)00111-0.

    Article  CAS  Google Scholar 

  35. Wu J, Wei W, Wang LY, Su ZG, Ma GH. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials. 2007;28:2220–32. doi:10.1016/j.biomaterials.2006.12.024.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the financial support of International S&T Cooperation Program of China (2008DFA31640); Ministry of Education of the People’s Republic of China (20070423013); the Natural Science Foundation of Shandong Province (No. Y2006C110) and the Youth Foundation of Health Department of Shandong Province (No. 2007QZ021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Guang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Q.X., Chen, X.G., Zhao, Q.S. et al. Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties. J Mater Sci: Mater Med 20, 1603–1610 (2009). https://doi.org/10.1007/s10856-009-3729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3729-x

Keywords

Navigation