Skip to main content
Log in

Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Here, the layer-by-layer technique (LbL) was used to modify glass as model biomaterial with multilayers of chitosan and heparin to control the interaction with MG-63 osteoblast-like cells. Different pH values during multilayer formation were applied to control their physico-chemical properties. In the absence of adhesive proteins like plasma fibronectin (pFN) both plain layers were rather cytophobic. Hence, the preadsorption of pFN was used to enhance cell adhesion which was strongly dependent on pH. Comparing the adhesion promoting effects of pFN with an engineered repeat of the FN III fragment and collagen I which both lack a heparin binding domain it was found that multilayers could bind pFN specifically because only this protein was capable of promoting cell adhesion. Multilayer surfaces that inhibited MG-63 adhesion did also cause a decreased cell growth in the presence of serum, while an enhanced adhesion of cells was connected to an improved cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Anselme, Biomaterials 21, 667–681 (2000). doi:10.1016/S0142-9612(99)00242-2

    Article  PubMed  CAS  Google Scholar 

  2. L. He, A. Dexter, A. Middelberg, Chem. Eng. Sci. 61, 989–1003 (2006). doi:10.1016/j.ces.2005.05.064

    Article  CAS  Google Scholar 

  3. T. Groth, Z.M. Liu, M. Niepel, D. Peschel, K. Kirchhof, G. Altankov, N. Faucheux in NATO Science Series. Nanoengineered Systems for Regenerative Medicine, ed. by V. Shastri, G. Altankov (Springer, New York, 2009) (accepted for publication)

  4. T. Groth, Z.M. Liu, in Membranes for the Life Sciences, ed. by K.V. Peinemann, S. Pereira Nunes (Wiley-VCH, Weinheim, 2007), p. 27

    Google Scholar 

  5. N. Krasteva, B. Seifert, M. Hopp, G. Malsch, W. Albrecht, G. Altankov, T. Groth, J. Biomater. Sci. Polym. Ed. 16, 1–22 (2005). doi:10.1163/1568562052843348

    Article  PubMed  CAS  Google Scholar 

  6. G. Boese, C. Trimpert, W. Albrecht, G. Malsch, T. Groth, A. Lendlein, Tissue Eng. 13, 2995–3002 (2007). doi:10.1089/ten.2006.0442

    Article  PubMed  CAS  Google Scholar 

  7. Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Adv. Mater. 18, 3203–3224 (2006). doi:10.1002/adma.200600113

    Article  CAS  Google Scholar 

  8. U. Hersel, C. Dahmen, H. Kessler, Biomaterials 24, 4385–4415 (2003). doi:10.1016/S0142-9612(03)00343-0

    Article  PubMed  CAS  Google Scholar 

  9. S. Roessler, R. Born, D. Scharnweber, H. Worch, A. Sewing, M. Dard, J. Mater. Sci. Mater. Med. 12, 871–877 (2001). doi:10.1023/A:1012807621414

    Article  PubMed  CAS  Google Scholar 

  10. T.A. Petrie, J.R. Capadona, C.D. Reyes, A. Garcia, Biomaterials 27, 5459–5470 (2007). doi:10.1016/j.biomaterials.2006.06.027

    Article  Google Scholar 

  11. I.K. Kang, O.H. Kwon, K.H. Byun, Y. Kim, J. Mater. Sci. Mater. Med. 7, 135–140 (1996). doi:10.1007/BF00121251

    Article  CAS  Google Scholar 

  12. B. Seifert, P. Romaniuk, T. Groth, J. Mater. Sci. Mater. Med. 7, 465–469 (1996). doi:10.1007/BF00705426

    Article  CAS  Google Scholar 

  13. P.J. Schoen, The Anti-Coagulant Activity of Heparin–Biochemical Studies in Purified Systems (Datawyse, Maastricht, 1991)

    Google Scholar 

  14. R. Pankov, K.M. Yamada, J. Cell. Sci. 115, 3861–3863 (2002). doi:10.1242/jcs.00059

    Article  PubMed  CAS  Google Scholar 

  15. S. Ayad, R. Boot-Handford, M.J. Humphries, K.E. Kadler, A. Shuttleworth, The Extracellular Matrix. Facts Book (Academic Press, London, 1994)

    Google Scholar 

  16. H.P. Tan, Y.H. Gong, L.H. Lao, Z.W. Mao, C.Y. Gao, J. Mater. Sci. Mater. Med. 18, 1961–1968 (2007). doi:10.1007/s10856-007-3095-5

    Article  PubMed  CAS  Google Scholar 

  17. J. Fu, J. Ji, W. Yuan, J. Shen, Biomaterials 26, 6684–6692 (2005). doi:10.1016/j.biomaterials.2005.04.034

    Article  PubMed  CAS  Google Scholar 

  18. J.A. Hubbell, Biomaterials in Tissue Engineering. Biotechnology 13, 565–576 (1995). doi:10.1038/nbt0695-565

    Article  PubMed  CAS  Google Scholar 

  19. T. Boontheekul, D.J. Mooney, Curr. Opin. Biotechnol. 14, 1–7 (2003). doi:10.1016/j.copbio.2003.08.004

    Article  Google Scholar 

  20. G. Decher, Science 277,1232–1237 (1997)

  21. P.T. Hammond, Adv. Mater. 16, 1271–1293 (2004). doi:10.1002/adma.200400760

    Article  CAS  Google Scholar 

  22. G. Decher, J.B. Schlenoff, Multilayer Thin Films (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  23. T. Groth, A. Lendlein, Angew. Chem. Int. Ed. 43, 926–928 (2004). doi:10.1002/anie.200301708

    Article  CAS  Google Scholar 

  24. M. Kumar, React. Funct. Polym. 46, 1–27 (2000). doi:10.1016/S1381-5148(00)00038-9

    Article  CAS  Google Scholar 

  25. B. Casu, Carbohydr. Eur. 11, 18–21 (1994)

    Google Scholar 

  26. N. Faucheux, R. Schweiss, K. Luetzow, C. Werner, T. Groth, Biomaterials 25, 2721–2730 (2004). doi:10.1016/j.biomaterials.2003.09.069

    Article  PubMed  CAS  Google Scholar 

  27. S. Boddohi, C.E. Killingsworth, M.J. Kipper, Biomacromolecules 9, 2021–2028 (2008). doi:10.1021/bm8002573

    Article  PubMed  CAS  Google Scholar 

  28. D.S. Salloum, J.B. Schlenoff, Biomacromolecules 5, 1089–1096 (2004). doi:10.1021/bm034522t

    Article  PubMed  CAS  Google Scholar 

  29. B. Schoeler, N. Delorme, I. Doench, G.B. Sukhorukov, A. Fery, K. Glinel, Biomacromolecules 7, 2065–2071 (2006). doi:10.1021/bm060378a

    Article  PubMed  CAS  Google Scholar 

  30. D. Yoo, S.S. Shiratori, M. Rubner, Macromolecules 31, 4309–4318 (1998). doi:10.1021/ma9800360

    Article  CAS  Google Scholar 

  31. D.E. Discher, P. Janmey, Y. Wang, Science 310, 1139–1143 (2005). doi:10.1126/science.1116995

    Article  PubMed  ADS  CAS  Google Scholar 

  32. A. Schneider, G. Francius, R. Obeid, P. Schwinté, J. Hemmerlé, B. Frisch, P. Schaaf, J.P. Voegel, B. Senger, C. Picart, Langmuir 22, 1193–1200 (2006). doi:10.1021/la0521802

    Article  PubMed  CAS  Google Scholar 

  33. C.J. Wilson, R.E. Clegg, D.I. Leavesley, M.J. Pearcy, Tissue Eng. 11, 1–18 (2005). doi:10.1089/ten.2005.11.1

    Article  PubMed  CAS  Google Scholar 

  34. R. Tzoneva, N. Faucheux, T. Groth, Biochim. et. Biophys. Acta–Gen. Subjects 1770, 1538–1547 (2007)

    Article  CAS  Google Scholar 

  35. Y. Tamada, Y. Ikada, J. Biomed. Mater. Res. 28, 783–789 (1994). doi:10.1002/jbm.820280705

    Article  PubMed  CAS  Google Scholar 

  36. R.E. Baier, A.E. Meyer, J.R. Natiella, R.R. Natiella, J.M. Carter, J. Biomed. Mater. Res. 18, 337–355 (1984). doi:10.1002/jbm.820180404

    Article  CAS  Google Scholar 

  37. G. Altankov, K. Richau, T. Groth, Materialwiss. Engin. 34, 1120–1128 (2003)

    CAS  Google Scholar 

  38. M.H. Lee, P. Ducheyne, L. Lynch, D. Boettiger, R.J. Composto, Biomaterials 27, 1907–1916 (2006). doi:10.1016/j.biomaterials.2005.11.003

    Article  PubMed  CAS  Google Scholar 

  39. J. Vitte, A.M. Benoliel, A. Pierres, P. Bongrand, Eur. Cell Mater. 7, 52–63 (2004)

    PubMed  CAS  Google Scholar 

  40. N. Faucheux, R. Tzoneva, M.D. Nagel, T. Groth, Biomaterials 27, 234–245 (2006). doi:10.1016/j.biomaterials.2005.05.076

    Article  PubMed  CAS  Google Scholar 

  41. B.G. Keselowsky, D.M. Collard, A.J. Garcia, J. Biomed. Mater. Res. 66A, 247–259 (2003). doi:10.1002/jbm.a.10537

    Article  CAS  Google Scholar 

  42. S.A. Sukhishvili, E. Kharlampieva, V. Izumrudov, Macromolecules 39, 8873–8881 (2006). doi:10.1021/ma061617p

    Article  CAS  Google Scholar 

  43. B. Sim, J. Cladera, P. O’Shea, J. Biomed. Mater. Res. 68A, 352–359 (2004). doi:10.1002/jbm.a.20022

    Article  CAS  Google Scholar 

  44. L. Bacakova, E. Filova, F. Ripacek, V. Svorcik, V. Stary, Physiol. Res. 53(Suppl. 1), S35–S45 (2004)

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Graduiertenförderung des Landes Sachsen-Anhalt with a Ph.D. scholarship to KK and the German Academic Exchange Service (DAAD) in the frame of a bilateral exchange program between Germany and Bulgaria. Dr. J. Vogel is acknowledged for scientific support and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Groth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchhof, K., Hristova, K., Krasteva, N. et al. Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth. J Mater Sci: Mater Med 20, 897–907 (2009). https://doi.org/10.1007/s10856-008-3639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3639-3

Keywords

Navigation