Skip to main content
Log in

Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A glass belonging to the system SiO2–Al2O3–CaO–Na2O has been subjected to a patented ion-exchange treatment to induce surface antibacterial activity by doping with silver ions. Doped samples have been characterized by means of X-Ray diffraction (XRD), scanning electron microscopy (SEM) observation, energy dispersion spectrometry (EDS) analysis, in vitro bioactivity test, Ag+ leaching test by graphite furnace atomic absorption spectroscopy (GFAAS) analyses, cytotoxicity tests by fibroblasts adhesion and proliferation, adsorption of IgA and IgG on to the material to evaluate its inflammatory property and antibacterial tests (cultures with Staphylococcus aureus and Escherichia coli). In vitro tests results demonstrated that the modified glass maintains the same biocompatibility of the untreated one and, moreover, it acquires an antimicrobial action against tested bacteria. This method can be selected to realize glass or glass-ceramic bone substitutes as well as coatings on bio-inert devices, providing safety against bacterial colonization thus reducing the risks of infections nearby the implant site. The present work is the carrying on of a previous research activity, concerning the application of an ion-exchange treatment on glasses belonging to the ternary system SiO2–CaO–Na2O. On the basis of previous results the glass composition was refined and the ion-exchange process was adapted to it, in order to tune the final material properties. The addition of Al2O3 to the original glass system and the optimization of the ion-exchange conditions allowed a better control of the treatment, leading to an antibacterial material, without affecting both bioactivity and biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Gonfalonieri, E. Damonti, GIMMOC VI 1, 21 (2003)

    Google Scholar 

  2. D. Campoccia, L. Montanaro, C.R. Arciola, Biomaterials 27, 2331 (2006). doi:10.1016/j.biomaterials.2005.11.044

    Article  PubMed  CAS  Google Scholar 

  3. A.M. Mulligan, M. Wilson, J.C. Knowles, Biomaterials 24, 1797 (2003). doi:10.1016/S0142-9612(02)00577-X

    Article  PubMed  CAS  Google Scholar 

  4. T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen et al., J Mater. Sci. Mat. Med 9, 129 (1998). doi:10.1023/A:1008811501734

    Article  Google Scholar 

  5. J.C. Wataha, P.E. Lockwood, A.J. Schedle, Biomed. Mater. Res 52, 360 (2000). doi:10.1002/1097-4636(200011)52:2<360::AID-JBM16>3.0.CO;2-B

    Article  CAS  Google Scholar 

  6. O. Yamamoto, J. Sawai, H. Kojima, T.J. Samamoto, J. Mater. Sci. Mat. Med 13, 789 (2002). doi:10.1023/A:1016179225955

    Article  CAS  Google Scholar 

  7. O. Yamamoto, J.U. Sawai, T. Sasamoto, Int. J. Inorg. Mater. 2, 451 (2000). doi:10.1016/S1466-6049(00)00045-3

    Article  Google Scholar 

  8. M. Vallet-Regi, A. Ramila, S. Padilla, B.J. Munoz, J. Biomed. Mater. Res. 66, 580 (2003). doi:10.1002/jbm.a.10576

    Article  CAS  Google Scholar 

  9. L.L. Hench, J. Biomed. Mater. Res. 41, 511 (1998). doi:10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  10. M.M. Pereira, A.E. Clark, L.L. Hench, J. Biomed. Mater. Res. 18, 693 (1994). doi:10.1002/jbm.820280606

    Article  Google Scholar 

  11. A. Saranti, I. Koutselas, M.A. Karakassides, J. Non-Cryst. Solids 352, 390 (2006). doi:10.1016/j.jnoncrysol.2006.01.042

    Article  ADS  CAS  Google Scholar 

  12. I. Barrios de Arenas, C. Schattner, M. Vasquez, Ceram. Int. 32, 515 (2006). doi:10.1016/j.ceramint.2005.04.003

    Article  CAS  Google Scholar 

  13. H. Li-Chen, L. Chung-Cherng, S. Pouyan, Mater. Sci. Eng. 452–453, 326 (2007). doi:10.1016/j.msea.2006.10.136

    Google Scholar 

  14. M. Kawashita, S. Tsuneyama, F. Miyaji, T. Kokubo, H. Kozuka, K. Yamamoto, Biomaterials 21, 393 (2000). doi:10.1016/S0142-9612(99)00201-X

    Article  PubMed  CAS  Google Scholar 

  15. H.J. Jeon, S.C. Yi, S.G. Oh, Biomaterials 24, 4921 (2003). doi:10.1016/S0142-9612(03)00415-0

    Article  PubMed  CAS  Google Scholar 

  16. M. Kawashita, S. Toda, H.M. Kim, T. Kokubo, N.J. Masuda, J. Biomed. Mater. Res. 66A, 266 (2003)

    Article  CAS  Google Scholar 

  17. M. Bellantone, N.J. Coleman, L.L. Hench, S. Giannini and A. Moroni editors. Bioceramics. Key Eng. Mat. 192–195, 597 (2001)

    Google Scholar 

  18. M. Bellantone, N.J. Coleman, L. Hench, J. Biomed. Mater. Res. 51, 484 (2000). doi:10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  19. S. Di Nunzio, C. Vitale Brovarone, S. Spriano, D. Milanese, E. Verne’, V. Bergo, G. Maina, P. Spinelli, J. Eur. Ceram. Soc. 24, 2935 (2004). doi:10.1016/j.jeurceramsoc.2003.11.010

    Article  CAS  Google Scholar 

  20. E. Verne’, S. Di Nunzio, M. Bosetti, P. Appendino, C. Vitale Brovarone, G. Maina, M. Cannas, Biomaterials 26(25), 5111 (2005). doi:10.1016/j.biomaterials.2005.01.038

    Article  CAS  Google Scholar 

  21. H.M. Kim, F. Miyaji, T.J. Kokubo, Am. Ceram. Soc. 78(9), 2405 (1995). doi:10.1111/j.1151-2916.1995.tb08677.x

    Article  CAS  Google Scholar 

  22. W. Cao, L. Hench, Ceram. Int. 22, 493 (1996). doi:10.1016/0272-8842(95)00126-3

    Article  CAS  Google Scholar 

  23. S. Di Nunzio, E. Verne’, Process for the production of silver-containing prosthetic devices. WO 2006/058906

  24. NCCLS M2-A9 Performance standards for antimicrobial disk susceptibility tests, Approved Standard—Ninth Edition

  25. E. Jallot, H. Benhayoune, L. Kilian, J.L. Irigaray, Y. Barbotteau, G. Balossier, P. Bonhomme, J. Colloid Interface Sci. 233, 83 (2001)

    Article  PubMed  CAS  Google Scholar 

  26. K.R. Chintalacharuvu, L.U. Vuong, L.A. Loi, J.W. Larrick, S.L. Morrison, Clin. Immunol. 101(1), 21 (2001). doi:10.1006/clim.2001.5083

    Article  PubMed  CAS  Google Scholar 

  27. S. Hisano, M. Matsushita, T. Fujita, Y. Endo, S. Takebayashi, Am. J. Kidney Dis. 38(5), 1082 (2001). doi:10.1053/ajkd.2001.28611

    Article  PubMed  CAS  Google Scholar 

  28. J. Wettero, T. Bengtsson, P. Tengvall, J. Biomed. Mater. Res. 51, 742 (2000). doi:10.1002/1097-4636(20000915)51:4<742::AID-JBM24>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  29. C.S. Rinder, H.M. Rinder, K. Johnson, M. Smith, D.L. Lee, J. Tracey et al., Circulation 100, 553 (1999)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of INSTM and Regione Piemonte, that partially funded the research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Verné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verné, E., Miola, M., Vitale Brovarone, C. et al. Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. J Mater Sci: Mater Med 20, 733–740 (2009). https://doi.org/10.1007/s10856-008-3617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3617-9

Keywords

Navigation