Skip to main content

Advertisement

Log in

Bone regeneration using an injectable calcium phosphate/autologous iliac crest bone composites for segmental ulnar defects in rabbits

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Background Treatment of segmental bone loss remains a challenge in skeletal repair. A major therapeutic goal is the development of implantable materials that will promote bone regeneration. Objective We evaluate bone regeneration in grafts containing different concentrations autologous iliac crest bone (ACB) particles, carried in a new injectable calcium phosphate cement (CPC), in ulnar bone defects in rabbits. Methods Large upper-mid-diaphyseal defects (10 mm) were created in the left ulnae of 60 skeletally mature New Zealand white rabbits. ACB concentrations of 0, 25, 50, 75, and 100% (by volume) in CPC were used to fill operated sites. Defect bridging was monitored by serial radiography at 4, 8, and 12 weeks post-operation. Samples were then examined histologically and by manual palpation to determine the extent of new bone formation. Results At 4 weeks, we observed more elaborate structures and extensive absorption in ulnae treated with mixtures containing low concentrations of ACB (such as 0% and 25% volume of ACB/CPC), compared with those treated with mixtures containing high concentrations of ACB (such as 75% and 100% volume of ACB/CPC). At 8 weeks, histomorphometry revealed increased trabecular area and volume in the group treated with high ACB concentrations compared with those treated with low ACB concentrations. At 12 weeks, complete cortical bridging and regeneration of marrow space were detected in groups treated with high concentrations of ACB, and the amount of new bone regeneration was greater in these groups than in those treated with low ACB concentrations. Conclusions Treatment of rabbit ulnar defects with injectable CPC carrying an optimized concentration of ACB particles can lead to cortical bridging and bone marrow regeneration within 12 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.C. Chen, E.K. Chao, Y.K. Tu, S.W. Ueng, Scaphoid nonunion treated with vascular bone grafts pedicled on the dorsal supra-retinacular artery of the distal radius. J. Trauma 61(5), 1192–1197 (2006)

    Google Scholar 

  2. D.S. Bae, P.M. Waters, M.C. Gebhardt, Results of free vascularized fibula grafting for allograft nonunion after limb salvage surgery for malignant bone tumors. J. Pediatr. Orthop. 26(6), 809–814 (2006)

    Google Scholar 

  3. G. Binyamin, B.M. Shafi, C.M. Mery, Biomaterials: a primer for surgeons. Semin. Pediatr. Surg. 15(4), 276–283 (2006)

    Article  Google Scholar 

  4. C. Hierholzer, D. Sama, J.B. Toro, M. Peterson, D.L. Helfet, Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J. Bone Joint Surg. Am. 88(7), 1442–1447 (2006)

    Article  Google Scholar 

  5. S. Vastardis, R.A. Yukna, Evaluation of allogeneic bone graft substitute for treatment of periodontal osseous defects: 6-month clinical results. Compend. Contin. Educ. Dent. 27(1), 38–44 (2006)

    Google Scholar 

  6. R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 395, 81–98 (2002)

    Article  Google Scholar 

  7. H. Liu, H. Li, W. Cheng, Y. Yang, M. Zhu, C. Zhou, Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater. 2(5), 557–565 (2006)

    Article  Google Scholar 

  8. H.C. Pan, Y.C. Wang, C.H. Lee, D.Y. Yang, Hollow bone cement filled with impacted cancellous bone as a substitute for bone grafts in cervical spine fusion. J. Clin. Neurosci. 14(2), 143–147 (2007)

    Article  CAS  Google Scholar 

  9. R.K. Sharma, Marriage of autogenous bone and hydroxyapatite cement for reconstruction of frontal bone defect. Plast. Reconstr. Surg. 116(5), 1568–1569 (2005)

    Article  CAS  Google Scholar 

  10. W.H. Rijnen, J.W. Gardeniers, B.W. Schreurs, P. Buma, Impacted bone and calcium phosphate cement for repair of femoral head defects: a pilot study. Clin. Orthop. Relat. Res. 459, 216–221 (2007)

    Article  Google Scholar 

  11. Y. Weitao, K. Kangmei, J. Anmin, An injectable cement: synthesis, physical properties and scaffold for bone repair. J. Postgrad. Med. 53(1), 34–38 (2007)

    Article  CAS  Google Scholar 

  12. D. Keskin, C. Gundogdu, A.C. Atac, Experimental comparison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna. Med. Princ. Pract. 16(4), 299–305 (2007)

    Article  Google Scholar 

  13. J. Mueller, H. Meyer-Lueckel, S. Paris, W. Hopfenmuller, A.M. Kielbassa, Inhibition of lesion progression by the penetration of resins in vitro: influence of the application procedure. Oper. Dent. 31(3), 338–345 (2006)

    Article  Google Scholar 

  14. H.W. Kim, S.Y. Shin, H.E. Kim, Y.M. Lee, C.P. Chung, H.H. Lee, I.C. Rhyu, Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. J. Biomater. Appl. 10 (2007 in press)

  15. A.G. Dias, M.A. Lopes, J.D. Santos, A. Afonso, K. Tsuru, A. Osaka, S. Hayakawa, S. Takashima, Y. Kurabayashi, In vivo performance of biodegradable calcium phosphate glass ceramics using the rabbit model: histological and SEM observation. J. Biomater. Appl. 20(3), 253–266 (2006)

    Article  CAS  Google Scholar 

  16. D.J. Hak, The use of osteoconductive bone graft substitutes in orthopaedic trauma. J. Am. Acad. Orthop. Surg. 15(9), 525–536 (2007)

    Google Scholar 

  17. M.J. Coughlin, J.S. Grimes, M.P. Kennedy, Coralline hydroxyapatite bone graft substitute in hindfoot surgery. Foot Ankle Int. 27(1), 19–22 (2006)

    Google Scholar 

  18. D. Stubbs, M. Deakin, P. Chapman-Sheath, W. Bruce, J. Debes, R.M. Gillies, W.R. Walsh, In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25(20), 5037–5044 (2004)

    Article  CAS  Google Scholar 

  19. C.J. Hsu, W.Y. Chou, H.P. Teng, W.N. Chang, Y.J. Chou, Coralline hydroxyapatite and laminectomy-derived bone as adjuvant graft material for lumbar posteriolateral fusion. J. Neurosurg. Spine 3(4), 271–275 (2005)

    Google Scholar 

  20. K. Hoshi, Mechanisms of bone calcification. Clin. Calcium 17(10), 1499–1507 (2007)

    CAS  Google Scholar 

  21. H. Methe, E.R. Edelman, Tissue engineering of endothelial cells and the immune response. Transplant. Proc. 38(10), 3293–3299 (2006)

    Article  CAS  Google Scholar 

  22. K.A. Hing, L.F. Wilson, T. Buckland, Comparative performance of three ceramic bone graft substitutes. Spine J. 7(4), 475–490 (2007)

    Article  Google Scholar 

  23. J. Moura, L.N. Teixeira, C. Ravagnani, O. Peitl, E.D. Zanotto, M.M. Beloti, H. Panzeri,A.L. Rosa, P.T. de Oliveira, In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate). J. Biomed. Mater. Res. A. 82(3), 545–557 (2007)

    Google Scholar 

  24. A.J. Ambard, L. Mueninghoff, Calcium phosphate cement: review of mechanical and biological properties. J. Prosthodont. 15(5), 321–328 (2006)

    Article  Google Scholar 

  25. N. Kobayashi, K. Ong, M. Villarraga, J. Schwardt, R. Wenz, D. Togawa, T. Fujishiro, A.S. Turner, H.B. Seim 3rd, T.W. Bauer, Histological and mechanical evaluation of self-setting calcium phosphate cements in a sheep vertebral bone void model. J. Biomed. Mater. Res. A 81(4), 838–846 (2007)

    Google Scholar 

  26. A. Scutt, P. Bertram, Bone marrow cells are targets for the anabolic actions of prostaglandin E2 on bone: induction of a transition from nonadherent to adherent osteoblast precursors. J. Bone Miner. Res. 10(3), 474–487 (1995)

    Article  CAS  Google Scholar 

  27. I.A. Khlusov, A.V. Karlov, N.S. Pozhen’ko, I.V. Sukhodolo, M.Y. Khlusova. Relationship between osteogenic characteristics of bone marrow cells and calcium phosphate surface relief and solubility. Bull. Exp. Biol. Med. 141(1), 99–103 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Weitao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitao, Y., Kangmei, K., Xinjia, W. et al. Bone regeneration using an injectable calcium phosphate/autologous iliac crest bone composites for segmental ulnar defects in rabbits. J Mater Sci: Mater Med 19, 2485–2492 (2008). https://doi.org/10.1007/s10856-008-3383-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3383-8

Keywords

Navigation