Skip to main content
Log in

Bioactive Bone Substitute in a Rabbit Ulna Model: Preclinical Study

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Current therapies to effectively treat long-bone defects and extensive bone tissue loss remains limited. In this study, we created a new bone substitute by integrating advanced technologies such as structure patterning, controlled release of a bone growth factor and conjugation system for clinically effective bone regeneration. This novel bioactive bone substitute was evaluated for its safety and efficacy using a rabbit ulna model.

Methods:

A three dimensional bone patterned cylindrical structure with 1.5 cm in length and 5 mm in diameter was printed using poly(L-lactic acid)(PLLA) as a weight-bearing support and space-filling scaffold. And a bone morphogenetic protein 2 (BMP2) was employed to enhance bone regeneration, and coated to a 3D PLLA using alginate catechol and collagen to prolong the release kinetics. This novel bone substitute (BS)was evaluated for its physico-chemical and biological properties in vitro, and histological analysis and radiographical analysis such as X-ray, CT and micro-CT image analysis were performed to evaluate new bone formation in vivo.

Results:

The BS possesses an ideal shape and mechanically suitable proeperties for clinical use, with an easy-to-grab and break-resistant design at both ends, 80 ± 10 MPa of compression strength, and BMP2 release for two months. Histological analysis demonstrated the biocompability of BS with minimal inflammation and immune response, and X-ray, CT and micro-CT demonstrated effective new bone formation in rabbit ulna defect model.

Conclusion:

The preclinical study of a novel bioactive bone substitute has shown its safe and effective properties in an animal model suggesting its clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data presented in this study are available on request from all the authors.

References

  1. Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007;19:513–21.

    Article  PubMed  Google Scholar 

  2. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25:2445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jordana F, Le Visage C, Weiss P. Substituts osseux. Médecine/sciences. 2017;33:60–5.

    Article  PubMed  Google Scholar 

  4. Gotz W, Papageorgiou SN. Molecular, cellular and pharmaceutical aspects of synthetic hydroxyapatite bone substitutes for oral and maxillofacial grafting. Current Pharmaceut Biotechnol. 2017;18:95–106.

    Article  CAS  Google Scholar 

  5. Lee YJ, Ryu YH, Lee SJ, Moon SH, Kim KJ, Jin BJ, et al. Bone regeneration with 3D-printed hybrid bone scaffolds in a canine radial bone defect model. Tissue Eng Regen Med. 2022;19:1337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krishnan L, Priddy LB, Esancy C, Klosterhoff BS, Stevens HY, Tran L, et al. Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose BMP-2. Acta Biomater. 2017;49:101–12.

    Article  CAS  PubMed  Google Scholar 

  7. Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, et al. Non-union bone fractures. Nat Rev Dis Primers. 2021;7:57.

    Article  PubMed  Google Scholar 

  8. Ekegren CL, Edwards ER, de Steiger R, Gabbe BJ. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int J Environ Res Public Health. 2018;15:2845.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han JJ, Yang HJ, Hwang SJ. Enhanced bone regeneration by bone morphogenetic protein-2 after pretreatment with low-intensity pulsed ultrasound in distraction osteogenesis. Tissue Eng Regen Med. 2022;19:871–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho SH, Shin KK, Kim SY, Cho MY, Oh DB, Lim YT. In situ-forming collagen/poly-γ-glutamic acid hydrogel system with mesenchymal stem cells and bone morphogenetic protein-2 for bone tissue regeneration in a mouse calvarial bone defect model. Tissue Eng Regen Med. 2022;19:1099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skovrlj B, Koehler SM, Anderson PA, Qureshi SA, Hecht AC, Iatridis JC, et al. Association between BMP-2 and carcinogenicity. Spine. 2015;40:1862.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cahill KS, McCormick PC, Levi AD. A comprehensive assessment of the risk of bone morphogenetic protein use in spinal fusion surgery and postoperative cancer diagnosis. J Neurosurg Spine. 2015;23:86–93.

    Article  PubMed  Google Scholar 

  13. Beachler DC, Yanik EL, Martin BI, Pfeiffer RM, Mirza SK, Deyo RA, et al. Bone morphogenetic protein use and cancer risk among patients undergoing lumbar arthrodesis: a case-cohort study using the SEER-medicare database. J Bone Joint Surg Am. 2016;98:1064–72.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2008;62:ONS423–31.

    PubMed  Google Scholar 

  15. Rai B, Teoh SH, Hutmacher DW, Cao T, Ho KH. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26:3739–48.

    Article  CAS  PubMed  Google Scholar 

  16. Oshiro JA, Sato MR, Scardueli CR, Lopes de Oliveira GJP, Abucafy MP, Chorilli M. Bioactive molecule-loaded drug delivery systems to optimize bone tissue repair. Curr Protein Pept Sci. 2017;18:850–63.

    Article  CAS  PubMed  Google Scholar 

  17. Howard MT, Wang S, Berger AG, Martin JR, Jalili-Firoozinezhad S, Padera RF, et al. Sustained release of BMP-2 using self-assembled layer-by-layer film-coated implants enhances bone regeneration over burst release. Biomaterials. 2022;288:121721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wilson CG, Martín-Saavedra FM, Vilaboa N, Franceschi RT. Advanced BMP gene therapies for temporal and spatial control of bone regeneration. J Dent Res. 2013;92:409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jordana F, Le Visage C, Weiss P. Bone substitutes. Med Sci (Paris). 2017;33:60–5.

    Article  PubMed  Google Scholar 

  20. Kang MH, Lee H, Jang TS, Seong YJ, Kim HE, Koh YH. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater. 2019;84:453–67.

    Article  CAS  PubMed  Google Scholar 

  21. Feng Y, Zhu S, Mei D, Li J, Zhang J, Yang S, et al. Application of 3D printing technology in bone tissue engineering: a review. Curr Drug Deliv. 2021;18:847–61.

    Article  CAS  PubMed  Google Scholar 

  22. Hong YR, Kim TH, Park KH, Kang J, Lee K, Park EK, et al. rhBMP-2-conjugated three-dimensional-printed poly (L-lactide) scaffold is an effective bone substitute. Tissue Eng Regen Med. 2023;20:69–81.

    Article  CAS  PubMed  Google Scholar 

  23. Thangaraju P, Varthya SB. ISO 10993: biological evaluation of medical devices. in Medical Device Guidelines and Regulations Handbook. 2022, Springer. p 163–187.

  24. Upman PJ. ISO 10993–6: Test for local effects after implantation. BONEZone. 2006;5:50–2.

    Google Scholar 

  25. Zhang Q, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, et al. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials. 2012;33:5067–75.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan B, Zhou SY, Chen XS. Rapid prototyping technology and its application in bone tissue engineering. J Zhejiang Univ Sci B. 2017;18:303–15.

    Article  Google Scholar 

  27. Guda T, Walker JA, Singleton BM, Hernandez JW, Son JS, Kim SG, et al. Guided bone regeneration in long-bone defects with a structural hydroxyapatite graft and collagen membrane. Tissue Eng Part A. 2013;19:1879–88.

    Article  CAS  PubMed  Google Scholar 

  28. Lee H, Rho J, Messersmith PB. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater. 2009;21:431–4. .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang F, Zheng L, Theopold J, Schleifenbaum S, Heyde CE, Osterhoff G. Methods for bone quality assessment in human bone tissue: a systematic review. J Orthop Surg Res. 2022;17:174.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lobb DC, DeGeorge BR Jr, Chhabra AB. Bone graft substitutes: current concepts and future expectations. J Hand Surg. 2019;44:497–505.

    Article  Google Scholar 

  31. Zhang H, Yang L, Yang XG, Wang F, Feng JT, Hua KC, et al. Demineralized bone matrix carriers and their clinical applications: an overview. Orthop Surg. 2019;11:725–37.

    Article  PubMed  PubMed Central  Google Scholar 

  32. West TA, Williams ML. Orthobiologics. Clin Podiatr Med Surg. 2019;36:609–26.

    Article  PubMed  Google Scholar 

  33. Lin S, Yin S, Shi J, Yang G, Wen X, Zhang W, et al. Orchestration of energy metabolism and osteogenesis by Mg2+ facilitates low-dose BMP-2-driven regeneration. Bioact Mater. 2022;18:116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruehle MA, Krishnan L, Vantucci CE, Wang Y, Stevens HY, Roy K, et al. Effects of BMP-2 dose and delivery of microvascular fragments on healing of bone defects with concomitant volumetric muscle loss. J Orthopaed Res. 2019;37:553–61.

    Article  CAS  Google Scholar 

  35. Decambron A, Fournet A, Bensidhoum M, Manassero M, Sailhan F, Petite H, et al. Low-dose BMP-2 and MSC dual delivery onto coral scaffold for critical-size bone defect regeneration in sheep. J Orthop Res. 2017;35:2637–45.

    Article  CAS  PubMed  Google Scholar 

  36. Efraim Y, Sarig H, Cohen Anavy N, Sarig U, de Berardinis E, Chaw SY, et al. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Acta Biomater. 2017;50:220–33.

    Article  CAS  PubMed  Google Scholar 

  37. Hu T, Liu L, Lam RWM, Toh SY, Abbah SA, Wang M, et al. Bone marrow mesenchymal stem cells with low dose bone morphogenetic protein 2 enhances scaffold-based spinal fusion in a porcine model. J Tissue Eng Regen Med. 2022;16:63–75.

    Article  CAS  PubMed  Google Scholar 

  38. Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, et al. Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res. 2021;54:e11055.

    Article  Google Scholar 

  39. Fung SL, Wu X, Maceren JP, Mao Y, Kohn J. In vitro evaluation of recombinant bone morphogenetic protein-2 bioactivity for regenerative medicine. Tissue Eng Part C Methods. 2019;25:553–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lafuente-Gracia L, Borgiani E, Nasello G, Geris L. Towards in silico models of the inflammatory response in bone fracture healing. Front Bioeng Biotechnol. 2021;9:703725.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K. The haematoma and its role in bone healing. J Exp Orthopaed. 2017;4:5.

    Article  CAS  Google Scholar 

  42. Hankenson K, Zimmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury. 2014;45:S8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive materials. 2017;2:224–47.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, et al. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact Mater. 2021;6:4110–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133–43.

    Article  CAS  PubMed  Google Scholar 

  46. Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, et al. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A. 2011;17:1389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gambari L, Grigolo B, Grassi F. Hydrogen sulfide in bone tissue regeneration and repair: state of the art and new perspectives. Int J Mol Sci. 2019;20:5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285:25103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nakase T, Yoshikawa H. Potential roles of bone morphogenetic proteins (BMPs) in skeletal repair and regeneration. J Bone Miner Metab. 2006;24:425–33.

    Article  PubMed  Google Scholar 

  52. Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006;7:51–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korean Fund for Regenerative Medicine funded by the Ministry of Science and ICT and by the Ministry of Health and Welfare (21C0705L1-11). We thank Enago for professional English language editing.

Author information

Authors and Affiliations

Authors

Contributions

JOL and C-WO conceived of the study. YRH, T-HK, KL, JOL, and C-WO wrote the manuscript. YRH and T-HK performed experiments.

Corresponding authors

Correspondence to Jeong Ok Lim or Chang-Wug Oh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical statement

Animal experiments were performed in accordance with the guidelines approved by KMEDI-hub (IACUC Approval no. KMEDI-22052302-01).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y.R., Kim, TH., Lee, K. et al. Bioactive Bone Substitute in a Rabbit Ulna Model: Preclinical Study. Tissue Eng Regen Med 20, 1205–1217 (2023). https://doi.org/10.1007/s13770-023-00591-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00591-4

Keywords

Navigation