Skip to main content
Log in

Upregulation of matrix and adhesion molecules induced by controlled topography

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrostatic spinning is receiving increasing attention in the field of tissue engineering, due to its ability to produce 3-dimensional, multidirectional, microfibrous scaffolds. These structures are capable of supporting a wide range of cell growth; however, there is little knowledge relating material substrates with specific cellular interactions and responses. The aim of this research was to investigate if electrostatically spun scaffolds, with controlled topographical features, would affect the adhesion mechanisms of contacting cells. A range of electrostatically spun Tecoflex® SG-80A polyurethane scaffolds was characterized in terms of inter-fibre separation, fibre diameter, surface roughness, void fraction and fibre orientation. Human embryonic lung fibroblasts and human vein endothelial cells were cultured on these scaffolds for 7, 14, 28 days, and analysed for their expression of extracellular matrix and adhesion molecules using image analysis and laser scanning confocal microscopy. There were significant differences in adhesion mechanisms between scaffolds, cell types and culture periods. Fibroblast-scaffolds were stimulated and oriented to a greater degree, and at earlier cultures, by the controlled topographical features than the endothelial cells. These conclusions confirm that cellular behaviour can be influenced by the induced scaffold topography at both molecular and cellular levels, with implications for optimum application specific tissue engineering constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Curtis, C. Wilkinson, Biomaterials 18, 1573 (1997)

    Article  CAS  Google Scholar 

  2. A. Curtis, C. Wilkinson, J. Biomater. Sci. Polym. Edn. 9, 1313 (1998)

    CAS  Google Scholar 

  3. J. Adams, Cell. Mol. Life Sci. 58, 371 (2001)

    Article  CAS  Google Scholar 

  4. R. Flemming, C. Murphy, G. Adams, S. Goodman, P. Nealey, Biomaterials 20, 573 (1999)

    Article  CAS  Google Scholar 

  5. A. Curtis, B. Casey, J. Gallagher, D. Pasqui, M. Wood, C. Wilkinson, Biophys. Chem. 94, 275 (2001)

    Article  CAS  Google Scholar 

  6. A. Curtis, C. Wilkinson, Biochem. Soc. Symp. 65, 15 (1999)

    CAS  Google Scholar 

  7. A.S. Badami, M.R. Kreke, M.S. Thompson, J.S. Riffle, A.S. Goldstein, Biomaterials 27, 596 (2006)

    Article  CAS  Google Scholar 

  8. L. Chou, J. Firth, V. Uitto, D. Brunette, J. Cell Sci. 108, 1563 (1995)

    CAS  Google Scholar 

  9. E. den Braber, J. de Ruijter, L. Ginsel, A. von Recum, J. Jansen, J. Biomed. Mater. Res. 40, 291 (1998)

    Google Scholar 

  10. S. Goodman, P. Sims, R. Albrecht, Biomaterials 17, 2087 (1996)

    Article  CAS  Google Scholar 

  11. P. Ma, R. Zhang, J. Biomed. Mater. Res. 46, 60 (1999)

    Article  CAS  Google Scholar 

  12. K. Andrews, J. Hunt, R. Black, Polym. Int. 57, 203 (2008)

    Article  CAS  Google Scholar 

  13. J. Doshi, D. Reneker, J. Electrostat. 35, 151 (1995)

    Article  CAS  Google Scholar 

  14. H. Jin, S. Fridrikh, G. Rutledge, D. Kaplan, Biomacromolecules 3, 1233 (2002)

    Article  CAS  Google Scholar 

  15. E. Kenawy, J. Layman, J. Watkins, G. Bowlin, J. Matthews, D. Simpson, G. Wnek, Biomaterials 24, 907 (2003)

    Article  CAS  Google Scholar 

  16. S. Koombhongse, W. Liu, D. Reneker, J. Polym. Sci. 39, 2598 (2001)

    CAS  Google Scholar 

  17. J. Matthews, G. Wnek, D. Simpson, G. Bowlin, Biomacromolecules 3, 232 (2002)

    Article  CAS  Google Scholar 

  18. K. Andrews, J. Hunt, R. Black, Biomaterials 28, 1014 (2007)

    Article  CAS  Google Scholar 

  19. K. Andrews, P. Feugier, R. Black, J. Hunt, J. Surg. Res. (2007). doi:10.1016/j.jss.2007.08.030

  20. H.-J. Jin, J. Chen, V. Karageorgiou, G. Altman, D. Kaplan, Biomaterials 25, 1039 (2004)

    Article  CAS  Google Scholar 

  21. B. Min, G. Lee, S. Kim, Y. Nam, T. Lee, W. Park, Biomaterials 25, 1289 (2004)

    Article  CAS  Google Scholar 

  22. X. Mo, C. Xu, M. Kotaki, S. Ramakrishna, Biomaterials 25, 1883 (2004)

    Article  CAS  Google Scholar 

  23. M. Shin, H. Yoshimoto, J. Vacanti, Tissue Eng. 10, 33 (2004)

    Article  CAS  Google Scholar 

  24. M. Dalby, S. Childs, M. Riehle, H. Johnstone, S. Affrossman, A. Curtis, Biomaterials 24, 927 (2003)

    Google Scholar 

  25. M. Dalby, M. Riehle, S. Yarwood, C. Wilkinson, A. Curtis, Exp. Cell Res. 284, 274 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the BBSRC, EPSRC and MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Andrews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, K.D., Hunt, J.A. Upregulation of matrix and adhesion molecules induced by controlled topography. J Mater Sci: Mater Med 19, 1601–1608 (2008). https://doi.org/10.1007/s10856-008-3377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3377-6

Keywords

Navigation