Skip to main content

Electrospun 3D Scaffolds for Tissue Regeneration

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Tissue engineering aims to fabricate and functionalise constructs that mimic the native extracellular matrix (ECM) in the closest way possible to induce cell growth and differentiation in both in vitro and in vivo conditions. Development of scaffolds that can function as tissue substitutes or augment healing of tissues is an essential aspect of tissue regeneration. Although there are many techniques for achieving this biomimicry in 2D structures and 2D cell cultures, translation of successful tissue regeneration in true 3D microenvironments is still in its infancy. Electrospinning, a well known electrohydrodynamic process, is best suited for producing and functionalising, nanofibrous structures to mimic the ECM. A systematic control of the processing parameters coupled with novel process innovations, has recently resulted in novel 3D electrospun structures. This chapter gives a brief account of the various 3D electrospun structures that are being tried as tissue engineering scaffolds. Combining electrospinning with other 3D structure forming technologies, which have shown promising results, has also been discussed. Electrospinning has the potential to bridge the gap between what is known and what is yet to be known in fabricating 3D scaffolds for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahirwal D, Hébraud A, Kádár R, Wilhelm M, Schlatter G (2013) From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams. Soft Matter 9(11):3164. https://doi.org/10.1039/c2sm27543k

    Article  CAS  Google Scholar 

  2. Andric T, Sampson AC, Freeman JW (2011) Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering. Mater Sci Eng C 31(1):2–8. https://doi.org/10.1016/j.msec.2010.10.001

    Article  CAS  Google Scholar 

  3. Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM, Akhyari P, Khademhosseini A (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31(27). Elsevier Ltd: 6941–6951. doi:https://doi.org/10.1016/j.biomaterials.2010.05.056

    Article  CAS  Google Scholar 

  4. Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly (ε-Caprolactone) Fiber: an overview. J Eng Fibers Fabr 9(3):74–90

    Google Scholar 

  5. Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15(5):405–412. https://doi.org/10.1016/j.semcancer.2005.06.009

    Article  PubMed  Google Scholar 

  6. Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Ho WJ (2011) Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun Nanofibrous scaffold. Biomaterials 32(6). Elsevier Ltd: 1583–1590. doi:https://doi.org/10.1016/j.biomaterials.2010.10.056

    Article  CAS  Google Scholar 

  7. Bosworth LA, Turner L-A, Cartmell SH (2013) State of the art composites comprising electrospun Fibres coupled with hydrogels: a review. Nanomedicine 9(3). Elsevier Inc.: 322–335. doi:https://doi.org/10.1016/j.nano.2012.10.008

    Article  CAS  Google Scholar 

  8. Brown TD, Dalton PD, Hutmacher DW (2011) Direct writing by way of melt electrospinning. Adv Mater 23(47):5651–5657. https://doi.org/10.1002/adma.201103482

    Article  CAS  PubMed  Google Scholar 

  9. Butcher AL, Offeddu GS, Oyen ML (2014) Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends Biotechnol 32(11). Elsevier Ltd: 564–570. doi:https://doi.org/10.1016/j.tibtech.2014.09.001

    Article  CAS  Google Scholar 

  10. Cai S, Xu H, Jiang Q, Yang Y (2013) Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study. Langmuir 29(7):2311–2318. https://doi.org/10.1021/la304414j

    Article  CAS  PubMed  Google Scholar 

  11. Centola M, Rainer A, Spadaccio C, De Porcellinis S, Genovese JA, Trombetta M (2010) Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2(1):14102. https://doi.org/10.1088/1758-5082/2/1/014102

    Article  CAS  Google Scholar 

  12. Chakrapani VY, Sampath Kumar TS, Raj DK, Kumary TV (2017) Electrospun 3D composite scaffolds for craniofacial critical size defects. J Mater Sci Mater Med 28(8). Springer US: 119. doi:https://doi.org/10.1007/s10856-017-5933-4

  13. Chinnappan A, Baskar C, Baskar S, Ratheesh G, Ramakrishna S (2017) An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics. J Mater Chem C 5(48). Royal Society of Chemistry: 12657–12673. doi:https://doi.org/10.1039/C7TC03058D

    Article  CAS  Google Scholar 

  14. Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21(26):9419. https://doi.org/10.1039/c0jm04502k

    Article  CAS  Google Scholar 

  15. Cooley JF (1902) Apparatus for electrically dispersing fluids. US Patent 692,631. US Patent 692,631, issued 1902

    Google Scholar 

  16. Cukierman E (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712. https://doi.org/10.1126/science.1064829

    Article  CAS  Google Scholar 

  17. Dalton PD, Klee D, Möller M (2005) Electrospinning with dual collection rings. Polymer 46(3):611–614. https://doi.org/10.1016/j.polymer.2004.11.075

    Article  CAS  Google Scholar 

  18. Dawson JI, Oreffo ROC (2008) Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 473(2):124–131. https://doi.org/10.1016/j.abb.2008.03.024

    Article  CAS  PubMed  Google Scholar 

  19. Han N, Johnson JK, Bradley PA, Parikh KS, Lannutti JJ, Winter JO (2012) Cell attachment to hydrogel-electrospun Fiber mat composite materials. J Funct Biomater 3(4):497–513. https://doi.org/10.3390/jfb3030497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong S, Kim G (2011) Fabrication of size-controlled three-dimensional structures consisting of Electrohydrodynamically produced Polycaprolactone micro/nanofibers. Appl Phys Mater Sci Process 103(4):1009–1014. https://doi.org/10.1007/s00339-011-6381-5.

    Article  CAS  Google Scholar 

  21. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185(1). Elsevier B.V.: 12–21. doi:https://doi.org/10.1016/j.jconrel.2014.04.018

    Article  CAS  Google Scholar 

  22. Huang C, Ouyang Y, Niu H, He N, Ke Q, Jin X, Li D et al (2015) Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal Nanogrooves on a Fiber surface. ACS Appl Mater Interfaces 7(13):7189–7196. https://doi.org/10.1021/am509227t

    Article  CAS  PubMed  Google Scholar 

  23. Jenness NJ, Yiquan W, Clark RL (2012) Fabrication of three-dimensional electrospun microstructures using phase modulated femtosecond laser pulses. Mater Lett 66(1):360–363. https://doi.org/10.1016/j.matlet.2011.09.015

    Article  CAS  Google Scholar 

  24. Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG (2011) Two pole air gap electrospinning: fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater 7(1):203–215. https://doi.org/10.1016/j.actbio.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  25. Joseph J, Nair SV, Menon D (2015) Integrating Substrateless electrospinning with textile technology for creating biodegradable three-dimensional structures. Nano Lett 15(8):5420–5426. https://doi.org/10.1021/acs.nanolett.5b01815

    Article  CAS  PubMed  Google Scholar 

  26. June RK, Neu CP, Barone JR, Fyhrie DP (2011) Polymer mechanics as a model for short-term and flow-independent cartilage viscoelasticity. Mater Sci Eng C 31(4):781–788. https://doi.org/10.1016/j.msec.2010.11.029

    Article  CAS  Google Scholar 

  27. Kasuga T, Obata A, Maeda H, Ota Y, Yao X, Oribe K (2012) Siloxane-poly(lactic acid)-Vaterite composites with 3D cotton-like structure. J Mater Sci Mater Med 23(10):2349–2357. https://doi.org/10.1007/s10856-012-4607-5

    Article  CAS  PubMed  Google Scholar 

  28. Ki CS, Kim JW, Hyun JH, Ki HL, Hattori M, Rah DK, Park YH (2007) Electrospun three-dimensional silk fibroin nanofibrous scaffold. J Appl Polym Sci 106(6):3922–3928. https://doi.org/10.1002/app.26914

    Article  CAS  Google Scholar 

  29. Kim TG, Chung HJ, Park TG (2008) Macroporous and Nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4(6):1611–1619. https://doi.org/10.1016/j.actbio.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  30. Kitsara, Maria, Onnik Agbulut, Dimitrios Kontziampasis, Yong Chen, and Philippe Menasché. 2017. “Fibers for hearts: a critical review on electrospinning for cardiac tissue engineering.” Acta Biomater 48. Acta Materialia Inc.: 20–40. doi:https://doi.org/10.1016/j.actbio.2016.11.014

    Article  CAS  Google Scholar 

  31. Ko F, Leung V, Hartwell R, Yang H, Ghahary A (2012) Nanofibre based biomaterials – bioactive nanofibres for wound healing applications. In: 2012 international conference on biomedical engineering and biotechnology, 1:389–392. IEEE. doi:https://doi.org/10.1109/iCBEB.2012.279

  32. Kolewe ME, Park H, Gray C, Ye X, Langer R, Freed LE (2013) 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture. Adv Mater 25(32):4459–4465. https://doi.org/10.1002/adma.201301016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14(1):61–86. https://doi.org/10.1089/teb.2007.0150

    Article  CAS  PubMed  Google Scholar 

  34. Lee Y-S, Livingston Arinzeh T (2011) Electrospun nanofibrous materials for neural tissue engineering. Polymers 3(4):413–426. https://doi.org/10.3390/polym3010413

    Article  CAS  Google Scholar 

  35. Li W-j, Shanti RM, Tuan RS (2006) Electrospinning technology for nanofibrous scaffolds in tissue engineering. In: Nanotechnologies for the life sciences, vol 9. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 135–187. https://doi.org/10.1002/9783527610419.ntls0097

    Chapter  Google Scholar 

  36. Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7 A):1051–1064. https://doi.org/10.1205/cherd06196

    Article  CAS  Google Scholar 

  37. Liu J, Liu Q, Ma S, Liang J, Ma X, Fong H (2013) Continuous bundles of aligned electrospun Polyacrylonitrile copolymer nanofibers prepared via the flowing water bath and their morphological, structural, and componential variations during the opposite-directional diffusion process. Polymer 54(18). Elsevier Ltd: 4987–4996. doi:https://doi.org/10.1016/j.polymer.2013.07.017

    Article  CAS  Google Scholar 

  38. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5). Elsevier Ltd: 30–40. https://doi.org/10.1016/S1369-7021(04)00233-0

    Article  CAS  Google Scholar 

  40. Matsumoto H, Tanioka A (2011) Functionality in electrospun nanofibrous membranes based on Fiber’s size, surface area, and molecular orientation. Membranes 1(4):249–264. https://doi.org/10.3390/membranes1030249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McClure MJ, Wolfe PS, Simpson DG, Sell SA, Bowlin GL (2012) The use of air-flow impedance to control Fiber deposition patterns during electrospinning. Biomaterials 33(3):771–779. https://doi.org/10.1016/j.biomaterials.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  42. McCullen SD, Ramaswamy S, Clarke LI, Gorga RE (2009) Nanofibrous composites for tissue engineering applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4):369–390. https://doi.org/10.1002/wnan.39

    Article  CAS  PubMed  Google Scholar 

  43. Mikos AG, Herring SW, Ochareon P, Elisseeff J, Helen HL, Kandel R, Schoen FJ et al (2006) Engineering complex tissues. Tissue Eng 12(12):3307–3339. https://doi.org/10.1089/ten.2006.12.3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morton WJ (1902) Method of dispersing fluids. US Patent 705, 691, issued 1902

    Google Scholar 

  45. Ng R, Zang R, Yang KK, Liu N, Yang S-T (2012) Three-dimensional fibrous scaffolds with microstructures and Nanotextures for tissue engineering. RSC Adv 2(27):10110. https://doi.org/10.1039/c2ra21085a

    Article  CAS  Google Scholar 

  46. Park SH, Kim TG, Kim HC, Yang D-Y, Park TG (2008) Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater 4(5):1198–1207. https://doi.org/10.1016/j.actbio.2008.03.019

    Article  CAS  PubMed  Google Scholar 

  47. Pawelec KM, Husmann A, Best SM, Cameron RE (2014) Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Mater Sci Eng C 37(1). Elsevier B.V.: 141–147. doi:https://doi.org/10.1016/j.msec.2014.01.009

    Article  CAS  Google Scholar 

  48. Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(ε-Caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7(10):2796–2805. https://doi.org/10.1021/bm060680j

    Article  CAS  PubMed  Google Scholar 

  49. Pilia M, Guda T, Pollot BE, Aguero V, Appleford MR (2014) Local microarchitecture affects mechanical properties of deposited extracellular matrix for Osteonal regeneration. Mater Sci Eng C 35(1). Elsevier B.V.: 122–133. doi:https://doi.org/10.1016/j.msec.2013.10.018

    Article  CAS  Google Scholar 

  50. Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10). Nature Publishing Group: 710–722. doi:https://doi.org/10.1038/nrg2879

    Article  CAS  Google Scholar 

  51. Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45(23):6283–6312. https://doi.org/10.1007/s10853-010-4509-1

    Article  CAS  Google Scholar 

  52. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater 5:29–40. https://doi.org/10.22203/eCM.v005a03

    Article  CAS  Google Scholar 

  53. Saha K, Pollock JF, Schaffer DV, Healy KE (2007) Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 11(4):381–387. https://doi.org/10.1016/j.cbpa.2007.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schneider, Oliver D., Franz Weber, Tobias J. Brunner, Stefan Loher, Martin Ehrbar, Patrick R. Schmidlin, and Wendelin J. Stark. 2009. “In vivo and in vitro evaluation of flexible, Cottonwool-like nanocomposites as bone substitute material for complex defects.” Acta Biomater 5 (5). Acta Materialia Inc.: 1775–1784. doi:https://doi.org/10.1016/j.actbio.2008.11.030

    Article  CAS  Google Scholar 

  55. Shim IK, Mi RJ, Kim KH, Seol YJ, Park YJ, Park WH, Lee SJ (2010) Novel three-dimensional scaffolds of poly ( L -lactic acid ) microfibers using electrospinning and mechanical expansion : fabrication and bone regeneration. J Biomed Mater Res B Appl Biomater 95(1):150–160. https://doi.org/10.1002/jbm.b.31695

    Article  CAS  PubMed  Google Scholar 

  56. Shim IK, Suh WH, Lee SY, Lee SH, Heo SJ, Lee MC, Lee SJ (2009) Chitosan nano−/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J Biomed Mater Res A 90A(2):595–602. https://doi.org/10.1002/jbm.a.32109

    Article  CAS  Google Scholar 

  57. Shin S-H, Purevdorj O, Castano O, Planell J a, Kim H-W (2012) A short review: recent advances in electrospinning for bone tissue regeneration. Journal of Tissue Engineering 3(1):2041731412443530. https://doi.org/10.1177/2041731412443530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smit E, Buttner U, Sanderson RD (2005) Continuous yarns from electrospun fibers. Polymer 46(8):2419–2423. https://doi.org/10.1016/j.polymer.2005.02.002

    Article  CAS  Google Scholar 

  59. Soliman, Sherif, Stefania Pagliari, Antonio Rinaldi, Giancarlo Forte, Roberta Fiaccavento, Francesca Pagliari, Ornella Franzese, et al. 2010. “Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.” Acta Biomater 6 (4). Acta Materialia Inc.: 1227–1237. doi:https://doi.org/10.1016/j.actbio.2009.10.051.

    Article  CAS  Google Scholar 

  60. Starly B, Lau W, Bradbury T, Sun W (2006) Internal architecture design and freeform fabrication of tissue replacement structures. CAD Computer Aided Design 38(2):115–124. https://doi.org/10.1016/j.cad.2005.08.001

    Article  Google Scholar 

  61. Stevens MM (2005) Exploring and engineering the cell-surface Interface. Science 310(2005):1135–1138. https://doi.org/10.1016/j.bpj.2010.12.1248

    Article  CAS  Google Scholar 

  62. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional Nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002

    Article  CAS  Google Scholar 

  63. Sun B, Long Y-Z, Fang Y, Li M-M, Zhang H-D, Li W-J, Tian-Xiang X (2012) Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale 4(6):2134. https://doi.org/10.1039/c2nr11782g

    Article  CAS  PubMed  Google Scholar 

  64. Takeo M, Chou WC, Qi S, Lee W, Rabbani P, Loomis C, Mark Taketo M, Ito M (2013) Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499(7457). Nature Publishing Group: 228–232. doi:https://doi.org/10.1038/nature12214

    Article  CAS  Google Scholar 

  65. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–847. https://doi.org/10.1038/nrm1489

    Article  CAS  Google Scholar 

  66. Teng S-H, Wang P, Kim H-E (2009) Blend fibers of chitosan–agarose by electrospinning. Mater Lett 63(28):2510–2512. https://doi.org/10.1016/j.matlet.2009.08.051

    Article  CAS  Google Scholar 

  67. Teo WE, Liao S, Chan CK, Ramakrishna S (2008) Remodeling of three-dimensional hierarchically organized Nanofibrous assemblies. Curr Nanosci 4(4):361–369. https://doi.org/10.2174/157341308786306080

    Article  CAS  Google Scholar 

  68. Teo WE, Ramakrishna S (2005) Electrospun fibre bundle made of aligned Nanofibres over two fixed points. Nanotechnology 16(9):1878–1884. https://doi.org/10.1088/0957-4484/16/9/077

    Article  CAS  Google Scholar 

  69. Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S (2007) A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer 48(12):3400–3405. https://doi.org/10.1016/j.polymer.2007.04.044

    Article  CAS  Google Scholar 

  70. Thorvaldsson A, Silva-Correia J, Oliveira JM, Reis RL, Gatenholm P, Walkenström P (2013) Development of nanofiber-reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique. J Appl Polym Sci 128(2):1158–1163. https://doi.org/10.1002/app.38316

    Article  CAS  Google Scholar 

  71. Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenström P (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9(3):1044–1049. https://doi.org/10.1021/bm701225a

    Article  CAS  Google Scholar 

  72. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663. https://doi.org/10.1002/bit.22361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toh YC, Ng S, Khong YM, Zhang X, Zhu Y, Lin PC, Te CM, Sun W, Yu H (2006) Cellular responses to a Nanofibrous environment. Nano Today 1(3):34–43. https://doi.org/10.1016/S1748-0132(06)70078-0

    Article  Google Scholar 

  74. Wallin P, Zandén C, Carlberg B, Erkenstam NH, Liu J, Gold J (2012) A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications. Biomicrofluidics 6(2):24131. https://doi.org/10.1063/1.4729747

    Article  CAS  PubMed  Google Scholar 

  75. Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T, Kobayashi H (2009) Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett 63(9–10). Elsevier B.V.: 754–756. doi:https://doi.org/10.1016/j.matlet.2008.12.042

    Article  CAS  Google Scholar 

  76. Yousefzadeh M, Latifi M, Amani-tehran M, Teo W-e, Ramakrishna S (2012) A note on the 3D structural design of electrospun nanofibers. J Eng Fibers Fabr 7(2):17–23

    CAS  Google Scholar 

  77. Yousefzadeh M, Latifi M, Teo W-E, Amani-Tehran M, Ramakrishna S (2011) Producing continuous twisted yarn from well-aligned nanofibers by water vortex. Polym Eng Sci 51(2):323–329. https://doi.org/10.1002/pen.21800

    Article  CAS  Google Scholar 

  78. Zhang S (2004) Beyond the petri dish. Nat Biotechnol 22(2):151–152. https://doi.org/10.1038/nbt0204-151

    Article  CAS  PubMed  Google Scholar 

  79. Zhang W, Yu J, Chang H (2015) Two dimensional Nanosheets as conductive, flexible elements in biomaterials. J Mater Chem B 3(25). Royal Society of Chemistry: 4959–64. doi:https://doi.org/10.1039/C5TB00087D

    Article  CAS  Google Scholar 

  80. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24(14):1782–1804. https://doi.org/10.1002/adma.201104631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Sampath Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sampath Kumar, T.S., Yogeshwar Chakrapani, V. (2018). Electrospun 3D Scaffolds for Tissue Regeneration. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_3

Download citation

Publish with us

Policies and ethics