Skip to main content

Advertisement

Log in

Self-crosslinked gliadin fibers with high strength and water stability for potential medical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

For the first time, protein fibers with excellent mechanical properties and water stability have been produced from gliadin for potential use in tissue culture and other medical applications. Biomaterials developed from plant proteins such as zein and soyproteins are preferred for several medical applications over synthetic polymers such as polylactic acid. However, the plant protein based biomaterials developed so far have poor mechanical properties and hydrolytic stability even after crosslinking. This study aims to develop biomaterials from gliadin with excellent mechanical properties and water stability without using any crosslinking agents. A novel gliadin fiber production method was used to self crosslink the fibers and obtain high strength and water stability. Gliadin fibers have high strength (120 MPa) and elongation (25%) compared to similar collagen fibers that were crosslinked with glutaraldehyde (strength of about 44 MPa and elongation of 14%). The fibers show 100% strength retention after being in pH 7 water at 50 °C for 40 days and also have better water stability than PLA in acidic conditions at high temperatures. Gliadin fibers are suitable for cell growth and promote the attachment and proliferation of bovine turbinate fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. M. VAZ, M. FOSSEN, R. F. TUIL, L. A. GRAAF, R. L. REIS, A. M. CUNHA, J. Biomed. Mater. Res., 65A (2003) 60

    Article  CAS  Google Scholar 

  2. Y. P. KATO and F. H. SILVER, Proceedings of the annual international conference of IEEE engineering, November 9–12, Seattle, WA, 1989

  3. L. BUTTAFOCO, N. G. KOLKMAN, P. E. BUIJTENHUIJS, A. A. POOT, P. J. DIJKSTRA, I. VERMES, J. FEIJEN, Biomaterials, 27 (2006) 724

    Article  CAS  Google Scholar 

  4. Q. LU, K. GANESAN, D. T. SIMIONESU, N. R. YVAVAHARE, Biomaterials, 25 (2004) 5227.

    Article  CAS  Google Scholar 

  5. J. DONG, Q. SUN, J. WANG, Biomaterials, 25 (2004) 4691

    Article  CAS  Google Scholar 

  6. S. GONG, H. WANG, Q. SUN, S. XUE, J. WANG, Biomaterials, 27 (2006) 3793

    Article  CAS  Google Scholar 

  7. P. H. MUNOZ, A. KANAVOURAS, R. VILLALOBOS, A. CHIRALT, J. Agric. Food. Chem., 52 (2005) 7897.

    Article  Google Scholar 

  8. P. H. MUNOZ, A. RUBIO, J. M. LAGARON, R. GAVARA, Biomacromolecules, 5 (2004) 415

    Article  Google Scholar 

  9. P. H. MUNOZ, A. KANAVOURAS, J. M. LAGARON, R. GAVARA, J. Agric. Food Chem., 53 (2005) 8216

    Article  Google Scholar 

  10. N. REDDY, Y. YANG, Biomacromolecules, 8 (2007) 638

    Article  CAS  Google Scholar 

  11. A. GENNADIOS, C. L. WELLER, Food Techn., 44(10) (1990) 63

    CAS  Google Scholar 

  12. H. C. HUANG, E. G. HAMMNOND, C. A. REITMEIER, D. J. MYERS, JOACS, 72 (1995) 1453

    Article  CAS  Google Scholar 

  13. R. A. BOYER, Indl. Engg. Chem., 32 (1940) 1549

    Article  CAS  Google Scholar 

  14. V. STELLA, P. VALLEE, P. ALBRECHT, E. POSTAIRE, Int. J. Pharm., 121 (1995) 117

    Article  CAS  Google Scholar 

  15. C. DUCLAIROIR, A. M. ORECCHIONI, P. DEPRAETERE, F. OSTERSTOCK, E. NAKACHE, Int. J. Pharm., 253 (2004) 133

    Article  Google Scholar 

  16. A. C. BECKWITH, J. S. WALL, R. W. JORDAN, Arch. Biochem. Biophys., 112 (1965) 16

    Article  CAS  Google Scholar 

  17. Y. YANG, L. WANG, S. LI, J. Appl. Polym. Sci., 59 (1996) 433

    Article  CAS  Google Scholar 

  18. J. F. CAVALLARO, P. D. KEMP, K. H. KRAUS, Biotechnol. Bioeng., 46 (1994) 781

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported with funds from Nebraska Wheat Board, The Consortium for Plant Biotechnology Research, Inc by DOE prime agreement No. DE-FG36-02G012026, Archer Daniel Midland Company, USDA Hatch Act, the Agricultural Research Division at the University of Nebraska-Lincoln and by Multi State Research Project S-1026. The financial sponsors do not endorse the views expressed in this publication. We also thank Dr. Liping Xie at the Veterinary Diagnostic Center for her help in the cell culture experiments and Ying Li for her help in the electrophoresis and water stability studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, N., Yang, Y. Self-crosslinked gliadin fibers with high strength and water stability for potential medical applications . J Mater Sci: Mater Med 19, 2055–2061 (2008). https://doi.org/10.1007/s10856-007-3294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3294-0

Keywords

Navigation