Skip to main content
Log in

Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Scaffold with controlled porosity constitute a cornerstone in tissue engineering, as a physical support for cell adhesion and growth. In this work, scaffolds of polycaprolactone were synthesized by a modified particle leaching method in order to control porosity and pore interconnectivity; the aim is to observe their influence on the mechanical properties and, in the future, on cell adhesion and proliferation rates. Low molecular weight PEMA beads with an average size of 200 μm were sintered with various compression rates in order to obtain the templates (negatives of the scaffolds). Then the melt polycaprolactone was injected into the porous template under nitrogen pressure in a custom made device. After cooling and solidifying of the melt polymer, the porogen was removed by selective dissolution in ethanol. The porosity and morphology of the scaffold were studied as well as the mechanical properties. Porosities from 60% to 85% were reached; it was found that pore interconnectivity logically increases with increasing porosity, and that mechanical strength decreases with increasing porosity. Because of their interesting properties and interconnected structure, these scaffolds are expected to find useful applications as a cartilage or bone repair material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. BOBIC and J. NOBLE, J. Bone Joint Surg. 82B (2000) 165

    Article  Google Scholar 

  2. L. PETERSON, T. MINAS, M. BRITTBERG, A. NILSSON, E. SJÖGREN-JANSSON and A. LINDAHL, Clin. Orthop. 374 (2000) 212

    Article  Google Scholar 

  3. E. B. HUNZIKER, Osteoarthr. Carti. 10 (2001) 432

    Article  Google Scholar 

  4. C. W. Patrick Jr, A. G. Mikos and L. V. McIntire (Editors), in “Frontiers in Tissue Engineering” (Pergamon Press, Oxford 1998)

  5. R. P. Lanza, R. Langer and J. Vacanti (Editors), in “Principles of Tissue Engineering” (Academic Press, San Diego, 2000)

  6. A. J. Domb, J. Kost and D. M. Wiseman (Editors), in “Handbook of Biodegradable Polymers” (Harwood Academic Publishers, Amsterdam, 1997)

  7. D. W. HUTMACHER, Biomaterials 21 (2000) 2529

    Article  CAS  Google Scholar 

  8. P. X. MA and J. W. CHOI, Tissue Eng. 7 (2001) 23

    Article  CAS  Google Scholar 

  9. V. J. CHEN and P. X. MA, Biomaterials 25 (2004) 2065

    Article  CAS  Google Scholar 

  10. Z. MA, C. GAO, Y. GONG and J. SHEN, J. Biomed. Mater. Res. B: Appl. Biomater. 67B (2003) 610

    Article  CAS  Google Scholar 

  11. R. BRÍGIDO DIEGO, M. PÉREZ OLMEDILLA, A. SERRANO AROCA, J. L. GÓMEZ RIBELLES, M. MONLEÓN PRADAS, G. GALLEGO FERRER and M. SALMERÓN SÁNCHEZ, J. Mater. Sci. Mater Med. 16 (2005) 693

    Article  Google Scholar 

  12. D. S. JONES, D. W. J. MCLAUGHLIN, C. P. MCCOY and S. P. GORMAN, Biomaterials 26 (2005) 1761

    Article  CAS  Google Scholar 

  13. T. HAYASHI, K. NAKAYAMA, M. MOCHIZUKI and T. MASUDA, Pure Appl. Chem. 74 (2002) 869

    Article  CAS  Google Scholar 

  14. V. CRESCENZI, G. MANZINI, G. CALZOLARI and C. BORRI, Eur. Polym. J. 8 (1972) 449

    Article  CAS  Google Scholar 

  15. L. J. Gibson and M. F. Ashby, in “Cellular Solids-Structure and Properties” (University Press, Cambridge 1999)

  16. A. J. SAMARZA and A. Athanasiou, Ann. Biomed. Eng. 32(2004) 2

    Article  Google Scholar 

  17. U. HANSEN, M. SCHÜNKE, C. DOMM, N. IOANNIDIS, J. HASSENPFLUG, T. GEHRKE and B. KURZ, J. Biomech. 34 (2001) 941

    Article  CAS  Google Scholar 

  18. E. M. DARLING and K. A. ANASTASIOU, Annals Biomed. Eng. 31 (2003) 1114

    Article  Google Scholar 

  19. O. DEMARTEAU, D. WENDT, A. BRACCINI, M. JAKOB, D. SCHAFER, M. HEBERER and I. MARTIN, Biomed. Biophys. Res. Commun. 310 (2003) 580

    Article  CAS  Google Scholar 

  20. J. S. TEMENOFF and A. G. MIKOS, Biomaterials 21 (2000) 431–440

    Article  CAS  Google Scholar 

  21. D. J. GRIFFON, M. REZA SEDIGHI, D. V. SCHAEFFER, J. A. EURELL and A. L. JOHNSON, Acta Biomaterialia 2 (2006) 313–320

    Article  Google Scholar 

  22. R. L. MAUCK, S. L. SEYHAN, G. A. ATESHIAN and C. T. HUNG, Ann. Biomed. Eng. 30 (2002) 1046–1056

    Article  Google Scholar 

Download references

Acknowledgements

The group of the Center for Biomaterials of the UPV acknowledges the support of Spanish Ministry of Science and Education through the MAT2004-04980-C02-01 project, and the support to their research group by the Generalitat Valenciana through the project GRUPOS03/018. Julio Suay Antón acknowledges the support of Spanish Ministry of Science and Technology through the MAT 2003-05391-C03-02 project. SEM was conducted by the authors in the Microscopy Service of the Universidad Politécnica de Valencia, whose advice is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lebourg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebourg, M., Sabater Serra, R., Más Estellés, J. et al. Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. J Mater Sci: Mater Med 19, 2047–2053 (2008). https://doi.org/10.1007/s10856-007-3282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3282-4

Keywords

Navigation