Skip to main content

Advertisement

Log in

In vitro biocompatibility assessment of PHBV/Wollastonite composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable and biocompatible materials are the basis for tissue engineering. As an initial step for developing bone tissue engineering scaffolds, the in vitro biocompatibility of degradable and bioactive composites consisting of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) and wollastonite (W) was studied by culturing osteoblasts on the PHBV/W substrates, and the cell adhesion, morphology, proliferation, and alkaline phosphatase (ALP) activity were evaluated. The results showed that the incorporation of wollastonite benefited osteoblasts adhesion and the osteoblasts cultured on the PHBV/W composite substrates spread better as compared to those on the pure PHBV after culturing for 3 h. In the prolonged incubation time, the osteoblasts cultured on the PHBV/W composite substrates revealed a higher proliferation and differentiation rate than those on the pure PHBV substrates. In addition, an increase of proliferation and differentiation rate was observed when the wollastonite content in the PHBV/W composites increased from 10 to 20 wt%. All of the results showed that the addition of wollastonite into PHBV could stimulate osteoblasts to proliferate and differentiate and the PHBV/W composites with wollastonite up to 20 wt% were more compatible than the pure PHBV materials for bone repair and bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. WANG, Biomaterials 24 (2003) 2133–2151

    Article  CAS  Google Scholar 

  2. S. GOGOLEWSKI, M. JOVANOVIC, S. M. PERREN, J. G. DILLON and K. HUGHES, J. Biomed. Mater. Res. 27 (1993) 1135–1148

    Article  CAS  Google Scholar 

  3. G. T. KOSE, H. KENAR, N. HASIRCI and V. HASIRCI, Biomaterials 24 (2003) 1949–1958

    Article  CAS  Google Scholar 

  4. L. J. CHEN and M. WANG, Biomaterials 23 (2002) 2631–2639

    Article  CAS  Google Scholar 

  5. H. Li and J. CHANG, Biomaterials 25 (2004) 5473–5480

    Article  CAS  Google Scholar 

  6. H. Li and J. CHANG, Polym. Degrad. Stabil. 87 (2005) 301–307

    Article  CAS  Google Scholar 

  7. D. F. WILLIAMS, Medical, Dental Materials, edited by R. W. CAHN, P. HAASEN and E. KRAMER J. Mater. Sci. Technol.—a comprehensive treatment. (Weinheim, New York, Basel, Cambridge: VCH, 1992) p.1–27

  8. S. L. ABBONDANZO, V. L. YOUNG, M. Q. WEI and F. W. MILLER, Mod. Pathol. 12 (1999) 706–713

    CAS  Google Scholar 

  9. D. F. WILLIAMS, The Williams Dictionary of Biomaterials. (Liverpool, UK: University Press, 1999) p. 40

    Google Scholar 

  10. S. VERRIER, J. J. BLAKER, V. MAQUET, L. L. HENCH and A. R. Boccaccini, Biomaterials 25 (2004) 3013–3021

    Article  CAS  Google Scholar 

  11. O. H. LOWRY, N. R. ROBERTS, M. WU, W. S. HIXTON and E. J. CRAWFORD, J. Biol. Chem. 207 (1954) 19–37

    CAS  Google Scholar 

  12. H.F. WANG An ATLAS of Bone of Cells and Cell Culture Techniques. (Shanghai Science and Technique press, 2001) p. 63

  13. ISO/EN 10993–5: Biological evaluation of medical devices-part 5: Tests for cytotoxicity: in vitro methods, 1992

  14. K. BURRIDGE and K. FATH, Bioessays 4 (1989) 104–108

    Article  Google Scholar 

  15. K. ANSELME, Biomaterials 7 (2000) 667–681

    Article  Google Scholar 

  16. S. VERRIER, R. Bareille, A. Rovira, M. DARD and J. AMEDEE, J Mater. Sci. Mater. Med. 7 (1996) 46–51

    Article  CAS  Google Scholar 

  17. D. A. ULEO and R. BIZIOS, J. Biomed. Mater. Res. 26 (1992) 291–301

    Article  Google Scholar 

  18. A. HUNTER, C. W. ASCHER, P. S. WALKER and G. W. BLUNN, Biomaterials 6 (1995) 287–295

    Article  Google Scholar 

  19. K DERHAMI, J. F. WOLFAARDT, A. WENNERBERG and P. G. SCOTT, J. Biomed. Mater. Res. 52 (2000) 315–322

    Article  CAS  Google Scholar 

  20. C. H. THOMAS, C. D. Mcfarland, M. L. JENKINS, A. REZANIA, J. C. STEELE, K. E. HEALY, J. Biomed. Mater. Res. 37 (1997) 81–93

    Article  CAS  Google Scholar 

  21. K. WEBB, V. HLASY and P. A. TRESCO, J. Biomed. Mater. Res. 41 (1984) 422–430

    Article  Google Scholar 

  22. M. YANG, S. ZHU, Y. CHEN, Z. CHANG, G. CHEN, Y. GONG, N. ZHAO and X. ZHANG, Biomaterials. 25 (2004) 1365–1373

    Article  CAS  Google Scholar 

  23. J. G. STEELE, C. MCFARLAND, B. A. DALTON, G. JOHNSON, M. D. EVANS and C. R. HOWLETT, J. Biomater. Sci. Polym. Ed. 5 (1993) 245–257

    CAS  Google Scholar 

  24. B. FENG, J. WENG, B. C. YANG, S. X. QU and X. D. ZHANG, Biomaterials 17 (2004) 3421–3428

    Article  Google Scholar 

  25. I. D. XYNOS, M. V. J. HUKKANEN, J. J. BATTEN, L. D. K. BUTTERY, L. L. Hench and J. M. Polak, Calcif. Tissue. Inter. 67 (2000) 321–329

    Article  CAS  Google Scholar 

  26. I. A. SILVER, J. DEAS and M. ERECINSKA, Biomaterials 22 (2001) 175–185

    Article  CAS  Google Scholar 

  27. J. E. GOUGH, J. R. JONES, L. L. HENCH, Biomaterials 25 (2004) 2039–2046

    Article  CAS  Google Scholar 

  28. A. EL-GHANNAM, P. DUCHEYNE and I.M. SHAPIRO, J. Biomed. Mater. Res. 36 (1997) 167–180

    Article  CAS  Google Scholar 

  29. C. LOTY, J. M. SAUTIER, H. BOULEKACHE, T. KOKUBO and H. M. KIM, J. Biomed. Mater. Res. 49 (2000) 423–434

    Article  CAS  Google Scholar 

  30. N. OLMO, A. I. MARTÍN, A. J. SALINAS, J. TURNAY, V. R. MARÍA and M. A. LIZARBE, Biomaterials 24 (2003) 3383–3393

    Article  CAS  Google Scholar 

  31. G. R. BECK Jr, E. C. Sullivan, E. MORAN and B. ZERLER, J. Cell. Biochem. 68 (1998) 269–280

    Article  CAS  Google Scholar 

  32. J. E. AUBIN, F. Liu, L. MALAVAL and A. K. GUPTA, Bone 17 (2 Suppl) (1995) 77S–83S

    Article  CAS  Google Scholar 

  33. L. MALAVAL, F. LIU, P. ROCHE and J. E. AUBIN, J. Cell. Biochem. 74 (1999) 616–627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Science Research Program of China (973 Program) (Grant No: 2005CB522700) and the Science and Technology Commission of Shanghai Municipality (Grant No: 02JC14009 and 05DJ14005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhai, W. & Chang, J. In vitro biocompatibility assessment of PHBV/Wollastonite composites. J Mater Sci: Mater Med 19, 67–73 (2008). https://doi.org/10.1007/s10856-007-3170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3170-y

Keywords

Navigation