Skip to main content
Log in

New heparinizable modified poly(carbonate urethane) surfaces diminishing bacterial colonization

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Percutaneous devices are extensively used in modern medicine therapies, even in long term applications. Complications from their use, related to bacterial colonization and/or to materials thrombogenicity, may result in a significant morbidity and mortality incidence. In this study, a novel polycarbonate-urethane (PCU), incorporating a tailor-made diamino-diamide-diol (PIME) showing the ability to bind heparin at physiological pH, was compared to commercial medical-grade PCUs (Carbothane® and Bionate®). Mechanical and thermal properties were evaluated by tensile tests, dynamic mechanical analysis and differential scanning calorimetry. The presence of a low amount of PIME chain extender in Bionate® polyurethanes (Bionate-PIME) slightly affects the mechanical properties, remaining however comparable with the medical grade PCUs used for the fabrication of cardiovascular devices. To verify thereof heparin surface adsorbed in disfavouring bacterial colonization, heparinized Bionate-PIME was tested for bacterial adhesion, using Bionate® and Carbothane® as reference. In vitro bacterial interaction tests were performed with the strains mainly involved in the pathogenesis of device-related infections (Sepidermidis and S. aureus). MTT tests and SEM observations showed a decrease in colonization of the different strains on the heparinized Bionate-PIME surfaces, confirming that preadsorbed heparin plays a role in mediating the biomaterial surface/bacterial cells interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. N. DANESE, Chem. Biol. 9 (2002) 873

    Article  CAS  Google Scholar 

  2. Y. H. AN and R. J. FRIEDMAN, J. Biomed. Mater. Res. (Appl. Biomater.) 43 (1998) 338

    Article  CAS  Google Scholar 

  3. L. RIMONDINI, M. FINI and R. GIARDINO, J. Appl. Biomater. Biomech. 3 (2005) 1

    Google Scholar 

  4. D. W. SPELMAN, MJA 176 (2002) 286

    Google Scholar 

  5. P. EGGIMANN, H. SAX and D. PITTET, Microbes Infect. 6 (2004) 1033

    Article  Google Scholar 

  6. M. K. SCHINABECK and M. A. GHANNOUM, Clin. Microbiol. Newsl. 25 (2003) 113

    Article  Google Scholar 

  7. J. N. BAUMGARTNER and S. L. COOPER, J. Biomed. Mater. Res. 40 (1998) 660

    Article  CAS  Google Scholar 

  8. P. FRANCOIS, P. VAUDAUX, N. NURDIN, H. J. MATHIEU, P. DESCOUTS and D. P. LEW, Biomaterials 17 (1996) 667

    Article  CAS  Google Scholar 

  9. M. C. TANZI, S. FARÈ and P. PETRINI, J. Biomater. Appl. 14 (2000) 325

    Article  CAS  Google Scholar 

  10. M. C. TANZI, Export Rev. Med. Devices 2 (2005) 473

    Article  CAS  Google Scholar 

  11. B. D. Ratner and A. S. Hoffman, Biomaterials science: An introduction to materials in medicine (Elsevier Academic Press: San Diego, 2004) p. 197

  12. U. MAKAL, L. WOOD, D. E. OHMAN and K. J. WYNNE, Biomaterials 27 (2006) 1316

    Article  CAS  Google Scholar 

  13. P. PETRINI, M. C. TANZI, L. VISAI, F. CASOLINI and P. SPEZIALE, J. Biomater. Sci. Polym. Ed. 11 (2000) 353

    Article  CAS  Google Scholar 

  14. R. S. WARD, K. R. MCCREA, Y. TIAN and M. C. TANZI, in Proceedings of the 7th world biomaterials congress, Sidney, May 2004 (Australian Society for Biomaterials Inc.: Victoria, 2004) p. 433

  15. P. APPELGREN, U. RANSJÖ, L. BINDSLEV and O. LARM, Lancet 345 (1995) 130

    Article  CAS  Google Scholar 

  16. L. RIMONDINI, S. FARÈ, E. BRAMBILLA, A. FELLONI, C. CONSONNI, F. BROSSA and A. CARASSI, J. Periodontol. 68 (1997) 556

    CAS  Google Scholar 

  17. L. VISAI, S. RINDI, P. SPEZIALE, P. PETRINI, S. FARÈ and M. C. TANZI, J. Biomater. Appl. 16 (2002) 191

    Article  CAS  Google Scholar 

  18. G. LEWIS, C. S. J. van HOOY-CORSTJENS, A. BHATTARAM and L. H. KOOLE, J. Biomed. Mater. Res. (Appl. Biomater.) 73 (2005) 77

    Google Scholar 

Download references

Acknowledgements

The Authors thanks Plan1Health (Amaro, Ud, I) for the financial support, PTG (Berkeley, CA, USA) for providing the materials, and GiMac (Castronno, Va, I) for the extrusion process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi De Nardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Nardo, L., Farè, S., Di Matteo, V. et al. New heparinizable modified poly(carbonate urethane) surfaces diminishing bacterial colonization. J Mater Sci: Mater Med 18, 2109–2115 (2007). https://doi.org/10.1007/s10856-007-3083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3083-9

Keywords

Navigation