Skip to main content
Log in

The effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Computer modelling techniques were employed to investigate the effect of surface silanol groups on the strength of adhesion of apatite thin films to silica surfaces. To this end, we have studied a series of silica surfaces with different silanol densities and calculated their interaction with apatite thin films. Our findings indicate that apatite does not attach strongly to surface hydroxy groups, but that apatite should deposit at dehydrated silica surfaces, especially when the surface silicon and oxygen species rearrange to form O–Si–O links. Any dangling silicon and oxygen bonds at the silica surfaces are saturated by coordination to oxygen and calcium atoms in the apatite layer, but the extra reactivity afforded by these under-coordinated surface species does not necessarily lead to more favourable substrate/film interactions. The lowest energy silica/apatite interfaces are those where an undistorted apatite layer can be deposited on a regular, stable substrate surface. Our simulations support the suggestion, that in vivo surface hydroxy groups are first condensed to form O–Si–O bridges before deposition and growth of apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. M. SANDERS, W. B. PERSON and L. L. HENCH, Appl. Spectrosc. 26 (1972) 530

    Article  CAS  Google Scholar 

  2. T. S. B. NARASARAJU and D. E. PHEBE, J. Mater. Sci. 31 (1996) 1

    Article  CAS  Google Scholar 

  3. H. FUJITA, T. NAKAMURA, J. TAMURA, M. KOBAYASHI, Y. KATSURA and T. KOKUBO, J. Biomed. Mat. Res. 40 (1998) 145

    Article  CAS  Google Scholar 

  4. T. KOKUBO, Mat. Res. Eng. C 25 (2005) 97

    Article  CAS  Google Scholar 

  5. K. KANDORI, S. SAWAI, Y. YAMAMOTO, H. SAITO and T. ISHIKAWA, Colloids Surf. 68 (1992) 283

    Article  CAS  Google Scholar 

  6. K. KANDORI, A. FUDO and T. ISHIKAWA, Phys. Chem. Chem. Phys. 2 (2000) 2015

    Article  CAS  Google Scholar 

  7. S. B. CHO, F. MIYAJI, T. KOKUBO, K. NAKANISHI, N. SOGA and T. NAKAMURA, J. Mater. Sci.-Mat. in Medicine 9 (1998) 279

    Article  CAS  Google Scholar 

  8. I. D. XYNOS, A. J. EDGAR, L.D.K. BUTTERY, L. L. HENCH and J. M. POLAK, Biochem. Biophys. Res. Commun. 276 (2000) 461

    Article  CAS  Google Scholar 

  9. C. Y. KIM, A. E. CLARK and L. L. HENCH, J. Non-Cryst. Solids 113 (1989) 195

    Article  CAS  Google Scholar 

  10. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA and K. De Groot J. Biomed. Mat. Res. 28 (1994) 7

    Article  CAS  Google Scholar 

  11. S. B. CHO, K. NAKANISHI, T. KOKUBO, N. SOGA, C. OHTSUKI and T. NAKAMURA, J. Biomed. Mat. Res. (App Biomaterials) 33 (1996) 145

    Article  CAS  Google Scholar 

  12. D. EGLIN and C. C. PERRY, J. Bioact. Compat. Polym. 20 (2005) 437

    Article  CAS  Google Scholar 

  13. A. P. Sutton and R. W. Balluffi, Interfaces in crystalline materials, Monographs on the physics and chemistry of materials, vol. 51 (Clarendon Press, Oxford, 1995)

  14. G. W. WATSON, E. T. KELSEY, N. H. De LEEUW, D. J. HARRIS and S. C. PARKER, J. Chem. Soc. Faraday. Trans. 92 (1996) 433

    Article  CAS  Google Scholar 

  15. D. J. HARRIS, G. W. WATSON and S. C. PARKER, Philos. Mag. A 74 (1996) 407

    Article  CAS  Google Scholar 

  16. N. H. De LEEUW, S. C. PARKER, C. R. A. CATLOW and G. D. PRICE, Am. Mineral. 85 (2000) 1143

    Google Scholar 

  17. R. BENEDEK, D. N. SEIDMAN and C. WOODWARD, J. Phys. Condens. Matter 14 (2002) 2877

    Article  CAS  Google Scholar 

  18. D. C. SAYLE, S. A. MAICANEANU, B. SLATER and C. R. A. CATLOW, J. Mater. Chem. 9 (1999) 2779

    Article  CAS  Google Scholar 

  19. D. C. SAYLE, C. R. A. CATLOW, N. DULAMITA, M. J. F. HEALY, S. A. MAICANEANU, B. SLATER and G. W. WATSON, Mol. Simulat. 28 (2000) 683

    Google Scholar 

  20. N. H. De LEEUW, D. MKHONTO and C. R. A. CATLOW, J. Phys. Chem. B 107 (2003) 1

    Article  CAS  Google Scholar 

  21. N. H. De LEEUW and D. MKONTO, Chem. Mat. 15 (2003) 1567

    Article  CAS  Google Scholar 

  22. M. Born K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)

  23. D. E. PARRY, Surf. Sci. 49 (1975) 433

    Article  CAS  Google Scholar 

  24. D. E. PARRY, Surf. Sci. 54 (1976) 195

    Article  Google Scholar 

  25. B. G. DICK and A. W. OVERHAUSER, Phys. Rev. 112 (1958) 90

    Article  CAS  Google Scholar 

  26. M. J. SANDERS, M. LESLIE and C. R. A. CATLOW, J. Chem. Soc. Chem. Commun. (1984) 1271

  27. N. H. De LEEUW, F. M. HIGGINS and S. C. PARKER, J. Phys. Chem. B 103 (1999) 1270

    Article  Google Scholar 

  28. Z. DU and N. H. De LEEUW, Surf. Sci. 554 (2004) 193

    Article  CAS  Google Scholar 

  29. D. MKHONTO and N. H. De LEEUW, J. Mat. Chem. 12 (2002) 2633

    Article  CAS  Google Scholar 

  30. K. P. SCHRODER, J. SAUER, M. LESLIE and C. R. A. CATLOW, Chem. Phys. Lett. 188 (1992) 320

    Article  Google Scholar 

  31. N. H. De LEEUW and D. MKHONTO, J. Mat. Chem. 15 (2005) 3272

    Article  CAS  Google Scholar 

  32. F. C. R. BERTAUT, Acad Sci Paris 246 (1958) 3447

    CAS  Google Scholar 

  33. M. J. NORGETT and R. FLETCHER, J. Phys. C 3 (1970) L190

    Article  CAS  Google Scholar 

  34. W. A. Deer R. A. Howie J. Zussman, An introduction to the rock-forming minerals, (Longman, UK, 1992)

  35. J. A. L. RABONE and N. H. DE LEEUW, J. Comput. Chem. 27 (2006) 2150

    Article  CAS  Google Scholar 

  36. J. C. ELLIOTT, “Structure and chemistry of the apatites and other calcium orthophosphates”, Studies in inorganic chemistry vol 18 (Elsevier, 1994)

  37. S. B. HENDRICKS, M. E. JEFFERSON and V. M. MOSLEY, Z.Kristall. Kristallgeom. Kristallphys. Kristallchem. 81 (1932) 352

    CAS  Google Scholar 

  38. Y. DUVAL, J. A. MIELCZARSKI, O. S. POKROVSKY, E. MIELCZARSKI and J. J. EHRHARDT, J. Phys. Chem. B 106 (2002) 2937

    Article  CAS  Google Scholar 

  39. Z. DU and N. H. De LEEUW, Dalton Trans. 22 (2006) 2623

    Article  CAS  Google Scholar 

  40. T. KAWAI, C. OHTSUKI, M. KAMITAKAHARA, M. TANIHARA, T. MIYAZAKI, Y. SAKAGUCHI and S. KONAGAYA, Key. Eng. Mater. 284–286 (2005) 505

    Article  Google Scholar 

  41. A. TILOCCA, N. H. DE LEEUW, and A. N. CORMACK, Phys. Rev. B 73 (2006) 104209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DM thanks the Royal Society, UK for a South Africa International Fellowship and NHdL thanks the Engineering and Physical Sciences Research Council, UK for an Advanced Research Fellowship and for grant no. GR/S77714/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora H. de Leeuw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mkhonto, D., de Leeuw, N.H. The effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study. J Mater Sci: Mater Med 19, 203–216 (2008). https://doi.org/10.1007/s10856-007-3067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3067-9

Keywords

Navigation