Skip to main content
Log in

A neural cell culture study on thin film electrode materials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Functional neural stimulation requires good interface between the neural cells and the electrode surfaces. In order to study the effect of electrode materials and surface structure on cell adhesion and biocompatibility, we cultured cortical neurons on thin films of platinum and iridium oxide. We used both flat, as-deposited and laser micro-structured films. The laser micro-structuring consisted of creating regular arrays of micro-bumps or holes with diameters of 4–5 μm and height of about 1.5 μm. The micro-bumps were fabricated onto platinum and iridium film surfaces deposited on borosilicate glass substrates, using mask-projection irradiation with single nano-second pulses from a KrF excimer laser (λ = 248 nm). Amorphous and crystalline (deposited at 250 °C) IrO2 films were deposited onto the laser micro-structured iridium films by pulsed-DC reactive sputtering to obtain micro-structured IrO2 films. Cortical neurons isolated from rat embryo brain were cultured onto these film surfaces. Our results indicate that flat and micro-structured film surfaces are biocompatible and non-toxic for neural cell growth. The use of poly-d-lysine as a mediator for cell adhesion onto the thin film surfaces is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. S. HUMAYUN, E. de JUAN Jr., J. D. WEILAND, G. DAGNELIE, S. KATONA, R. GREENBERG and S. SUZUKI, Vision Res. 39 (1999) 2569

    Article  CAS  Google Scholar 

  2. A. E. GRUMET, J. L. Wyatt Jr. and J. F. Rizzo 3rd, J. Neurosci. Methods 101 (2000) 31

    Article  CAS  Google Scholar 

  3. T. L. ROSE and L. S. ROBBLEE, IEEE Trans. Biomed. Eng. 37 (1990) 1118

    Article  CAS  Google Scholar 

  4. X. BEEBE and T. L. ROSE, IEEE Trans. Biomed. Eng. 35 (1988) 494

    Article  CAS  Google Scholar 

  5. J. D. WEILAND, D. J. ANDERSON and M. S. HUMAYUN, IEEE Trans. Biomed. Eng. 49 (2002) 1574

    Article  Google Scholar 

  6. J. D. KLEIN, S. L. CLAUSON and S. F. COGAN, J. Mater. Res. 4 (1989) 1505

    CAS  Google Scholar 

  7. I. S. LEE, C. N. WHANG, Y. H. LEE, G. H. LEE, B. J. PARK, J. C. PARK, W. S. SEO and F. Z. CUI, Thin Solid Films 475 (2005) 332

    Article  CAS  Google Scholar 

  8. P. CLARK, S. BRITLAND and P. CONNOLLY, J. Cell Sci. 105(Pt 1) (1993) 203

    Google Scholar 

  9. E. T. den BRABER, J. E. de RUIJTER, L. A. GINSEL, A. F. von RECUM and J. A. JANSEN, Biomaterials 17 (1996) 2037

    Article  Google Scholar 

  10. E. T. den BRABER, J. E. de RUIJTER, H. T. SMITS, L. A. GINSEL, A. F. von RECUM and J. A. JANSEN, Biomaterials 17 (1996) 1093

    Article  Google Scholar 

  11. A. S. CURTIS and C. D. WILKINSON, J. Biomater. Sci. Polym. Ed. 9 (1998) 1313

    CAS  Google Scholar 

  12. A. RAJNICEK, S. BRITLAND and C. McCAIG, J. Cell. Sci. 110(Pt 23) (1997) 2905

    Google Scholar 

  13. A. RAJNICEK and C. McCAIG, J. Cell Sci. 110(Pt 23) (1997) 2915

    CAS  Google Scholar 

  14. K. TORIMITSU and A. KAWANA, Brain Res. Dev. Brain Res. 51 (1990) 128

    Article  CAS  Google Scholar 

  15. S. C. BAYLISS, L. D. BUCKBERRY, I. FLETCHER and M. J. TOBIN, Sensor Actuator A 74 (1999) 139

    Article  Google Scholar 

  16. Y. W. FAN, F. Z. CUI, S. P. HOU, Q. Y. XU, L. N. CHEN and I. S. LEE, J. Neurosci. Methods 120 (2002) 17

    Article  CAS  Google Scholar 

  17. S. TURNER, L. KAM, M. ISAACSON, H. G. CRAIGHEAD, W. SHAIN and J. TURNER, J. Vac. Sci. Technol. B 15 (1997) 2848

    Article  Google Scholar 

  18. R. H. HORNG, D. S. WUU, L. H. WU and M. K. LEE, Thin Solid Films 373 (2000) 231

    Article  CAS  Google Scholar 

  19. P. C. LIAO, C. S. CHEN, W. S. HO, Y. S. HUANG and K. K. TIONG, Thin Solid Films 301 (1997) 7

    Article  CAS  Google Scholar 

  20. K. KURIBAYASHI, Y. FUJITA, H. ISIGE and T. IWANUMA, Mater. Sci. Eng. B 109 (2004) 188

    Google Scholar 

  21. E. SLAVCHEVA, R. VITUSHINSKY, W. MOKWA and U. SCHNAKENBERG, J. Electrochem. Soc. 151 (2004) E226

    Article  CAS  Google Scholar 

  22. S. THANAWALA, S. P. KHAN, O. PALYVODA, D. G. GEORGIEV, I. A. AL-HOMOUDI, G. NEWAZ and G. W. AUNER, Surface modification and neural tissue culture of thin film electrode materials, In Mater. Res. Soc. Symp. Proc., vol 872, edited by D. LaVan (San Fransicso, 2005), pp. J18.18.11

Download references

Acknowledgements

This work was supported by Michigan Life Sciences Corridor Grant GR-358. The authors would like to acknowledge Smart Sensors and Integrated Microsystems (SSIM) for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Thanawala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanawala, S., Palyvoda, O., Georgiev, D.G. et al. A neural cell culture study on thin film electrode materials. J Mater Sci: Mater Med 18, 1745–1752 (2007). https://doi.org/10.1007/s10856-007-3054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3054-1

Keywords

Navigation