Skip to main content

Advertisement

Log in

PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Understanding of the neural response to electrical stimulation requires simultaneous recording from the various neurons of retina. Electrodes form the physical interface with the neural or retinal tissue. Successful retinal stimulation and recording demands conformal integration of these electrodes with the soft tissue to ensure establishment of proper electrical connection with the excitable tissue. Mechanical impedance of polydimethylsiloxane (PDMS) being compliant with that of retinal tissue, offers excellent potential as a substrate for metal electrodes. In this paper, Cr/Au micro electrodes with 200 μm diameter were fabricated on rigid and flexible PDMS substrates under crack free condition. Spontaneous buckling of thin films over PDMS substrates improved electrode performance circumventing the fabrication issues faced over a buckled surface. Individual electrodes from the multielectrode arrays (MEAs) were examined with electrochemical impedance spectroscopy and cyclic voltammetry. Controlled fabrication process as described here generates buckles in the metal films leading to increased electrode surface area that increases the charge storage capacity and decreases the interface impedance of the metal electrodes. At 1 kHz, impedance was reduced from 490 ± 27 kΩ to 246 ± 19 kΩ and charge storage capacity was increased from 0.40 ± 0.87 mC/cm2 to 2.1 ± 0.87 mC/cm2. Neural spikes recorded with PDMS based electrodes from isolated retina also contained less noise as indicated by signal to noise ratio analysis. The present study established that the use of PDMS as a substrate for MEAs can enhance the performance of any thin film metal electrodes without incorporation of any coating layers or nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • M.R. Abidian, D.C. Martin, Biomaterials 29(9), 1273 (2008)

    Article  Google Scholar 

  • A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, vol 2 (Wiley, New York, 1980)

    Google Scholar 

  • G. Bertotti, D. Velychko, N. Dodel, S. Keil, D. Wolansky, B. Tillak, M. Schreiter, A. Grall, P. Jesinger, S. Röhler, IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings (2014), pp. 304

  • S. Biswas, S. Das, M. Mahadevappa, IET Sci. Meas. Technol. (2017). doi:10.1049/iet-smt.2016.0315

  • N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Nature 393, 146 (1998)

    Article  Google Scholar 

  • D.E. Calvin, H.L. Nigel, J.S. Gregg, J. Neural Eng. 10(1), 011002 (2013)

    Article  Google Scholar 

  • P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, R.A. Normann, IEEE Trans. Biomed. Eng. 38(8), 758 (1991)

    Article  Google Scholar 

  • S. Chen, W. Pei, Q. Gui, R. Tang, Y. Chen, S. Zhao, H. Wang, H. Chen, Sens. Actuators A Phys. 193, 141 (2013)

    Article  Google Scholar 

  • S.-H. Cho, H.M. Lu, L. Cauller, M.I. Romero-Ortega, J.-B. Lee, G.A. Hughes, IEEE Sensors J. 8(11), 1830 (2008)

    Article  Google Scholar 

  • S.F. Cogan, Annu. Rev. Biomed. Eng. 10, 275 (2008)

    Article  Google Scholar 

  • M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, Y. Hanein, Biomed. Microdevices 16(1), 43 (2014)

    Article  Google Scholar 

  • W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, IEEE Trans. Biomed. Eng. 52(7), 1295 (2005)

    Article  Google Scholar 

  • W. Gent, Trans. Faraday Soc. 50, 1229 (1954)

    Article  Google Scholar 

  • L. Guo, G.S. Guvanasen, X. Liu, C. Tuthill, T.R. Nichols, S.P. DeWeerth, IEEE Trans. Biomed. Circuits Syst. 7(1), 1–10 (2013)

    Article  Google Scholar 

  • M. HajjHassan, V. Chodavarapu, S. Musallam, Sensors 8(10), 6704–6726 (2008)

    Article  Google Scholar 

  • M. Howlader, T. Doyle, S. Mohtashami, J. Kish, Sens. Actuators B Chem. 178, 132 (2013)

    Article  Google Scholar 

  • S. Hughes, J. Rodgers, D. Hickey, R.G. Foster, S.N. Peirson, M.W. Hankins, Sci. Rep. 6 (2016)

  • E. Huigen, A. Peper, C. Grimbergen, Med. Biol. Eng. Comput. 40(3), 332–338 (2002)

    Article  Google Scholar 

  • I. Jones, M. Fiscella, U. Frey, D. Jäckel, J. Müller, B. Roscic, R. Streichan, A. Hierlemann, In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International 2011, pp. 186-189

  • S.-K. Kang, R.K. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Nature 530(7588), 71–76 (2016)

    Article  Google Scholar 

  • H. Kasi, B. Kolomiets, S. Picaud, J. Sahel, P. Renaud, Proceedings of the 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2008, vol. LMIS4-CONF-2008-017, pp. 393–395

  • P.H. Li, J.L. Gauthier, M. Schiff, A. Sher, D. Ahn, G.D. Field, M. Greschner, E.M. Callaway, A.M. Litke, E. Chichilnisky, J. Neurosci. 35(11), 4663 (2015)

    Article  Google Scholar 

  • A. Litke, N. Bezayiff, E. Chichilnisky, W. Cunningham, W. Dabrowski, A. Grillo, M. Grivich, P. Grybos, P. Hottowy, S. Kachiguine, IEEE Trans. Nucl. Sci. 51(4), 1434 (2004)

    Article  Google Scholar 

  • H. Lorach, O. Marre, J.-A. Sahel, R. Benosman, S. Picaud, J. Physiol. Paris 107(5), 421 (2013)

    Article  Google Scholar 

  • D. Maji, S. Das, J. Phys. D. Appl. Phys. 47(10), 105401 (2014)

    Article  Google Scholar 

  • D. Maji, D. Das, J. Wala, S. Das, Sci Rep 5 (2015)

  • S. Moulton, J. Barisci, A. Bath, R. Stella, G. Wallace, Electrochim. Acta 49(24), 4223 (2004)

    Article  Google Scholar 

  • A.I. Pan, M.-H. Lin, H.-W. Chung, H. Chen, S.-R. Yeh, Y.-J. Chuang, Y.-C. Chang, T.-R. Yew, Analyst 141(1), 279 (2016)

    Article  Google Scholar 

  • V.S. Polikov, P.A. Tresco, W.M. Reichert, J. Neurosci. Methods 148(1), 1 (2005)

    Article  Google Scholar 

  • D.C. Rodger, A.J. Fong, W. Li, H. Ameri, A.K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P.R. Menon, E. Meng, Sens. Actuators B Chem. 132(2), 449 (2008)

    Article  Google Scholar 

  • P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter, D.R. Kipke, IEEE Trans. Biomed. Eng. 48(3), 361 (2001)

    Article  Google Scholar 

  • C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A. Litke, E. Chichilnisky, J. Neurophysiol. 95(6), 3311 (2006)

    Article  Google Scholar 

  • A. Shoval, C. Adams, M. David-Pur, M. Shein, Y. Hanein, E. Sernagor, Front. Neuroeng. 2, 4 (2009)

    Article  Google Scholar 

  • SIGMA-ALDRICH: Ames' Medium Formulation. In: Product Number A1420. (Revised: March 2007)

  • J. Viventi, D.-H. Kim, L. Vigeland, E.S. Frechette, J.A. Blanco, Y.-S. Kim, A.E. Avrin, V.R. Tiruvadi, S.-W. Hwang, A.C. Vanleer, Nat. Neurosci. 14(12), 1599 (2011)

    Article  Google Scholar 

  • J. Wala, D. Maji, S. Das, Biomedical Materials (Bristol, England, 2017). doi:10.1088/1748-605X/aa7e81

    Google Scholar 

  • H. Wark, R. Sharma, K. Mathews, E. Fernandez, J. Yoo, B. Christensen, P. Tresco, L. Rieth, F. Solzbacher, R. Normann, J. Neural Eng. 10(4), 045003 (2013)

    Article  Google Scholar 

  • A. Weltman, J. Yoo, E. Meng, Micromachines 7(10), 180 (2016)

    Article  Google Scholar 

  • Y.T. Wong, N. Dommel, P. Preston, L.E. Hallum, T. Lehmann, N.H. Lovell, G.J. Suaning, IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 425 (2007)

    Article  Google Scholar 

  • Y. Yang, K. Kulangara, R.T. Lam, R. Dharmawan, K.W. Leong, ACS Nano 6(10), 8591–8598 (2012)

    Article  Google Scholar 

  • B. Yeum, ZSimpWin 3.21, EChem Software. Ann Arbor, USA (1999–2005) (1999)

  • R. Yoda, J. Biomater. Sci. Polym. Ed. 9(6), 561–626 (1998)

    Article  Google Scholar 

  • K.J. Yu, D. Kuzum, S.-W. Hwang, B.H. Kim, H. Juul, N.H. Kim, S.M. Won, K. Chiang, M. Trumpis, A.G. Richardson, Nat. Mater. 15(7), 782–791 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Indian Nanoelectronics Users Programme (INUP), India for providing the support for carrying out the device fabrication, and CEN (Centre of Excellence in Nano Technology), IIT Bombay for their permission to use the facilities. The authors also thank BioMEMS Lab in SMST, Medical Instrumentation Lab in SMST, AFM lab in SMST and Bioprocess & Instrumentation Lab in Electrical Engineering Department of IIT Kharagpur for providing the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjunatha Mahadevappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Sikdar, D., Das, D. et al. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording. Biomed Microdevices 19, 75 (2017). https://doi.org/10.1007/s10544-017-0221-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0221-0

Keywords

Navigation