Skip to main content
Log in

Reaction of sodium calcium borate glasses to form hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study investigated the transformation of two sodium calcium borate glasses to hydroxyapatite (HA). The chemical reaction was between either 1CaO · 2Na2O · 6B2O3 or 2CaO · 2Na2O · 6B2O3 glass and a 0.25 M phosphate (K2HPO4) solution at 37, 75 and 200 °C. Glass samples in the form of irregular particles (125–180 μm) and microspheres (45–90 and 125–180 μm) were used in order to understand the reaction mechanism. The effect of glass composition (calcium content) on the weight loss rate and reaction temperature on crystal size, crystallinity and grain shape of the reaction products were studied. Carbonated HA was made by dissolving an appropriate amount of carbonate (K2CO3) in the 0.25 M phosphate solution. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used to characterize the reaction products. The results show that sodium calcium borate glasses can be transformed to HA by reacting with a phosphate solution. It is essentially a process of dissolution of glass and precipitation of HA. The transformation begins from an amorphous state to calcium-deficient HA without changing the size and shape of the original glass sample. Glass with a lower calcium content (1CaO · 2Na2O · 6B2O3), or reacted at an elevated temperature (75 °C), has a higher reaction rate. The HA crystal size increases and grain shape changes from spheroidal to cylindrical as temperature increases from 37 to 200 °C. Increase in carbonate concentration can also decrease the crystal size and yield a more needle-like grain shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. L. HENCH and J. WILSON, An Introduction to Bioceramics, World Scientific, Singapore (1993)

    Google Scholar 

  2. N. PATEL, S. M. BEST, I. R. GIBSON, S. KE, K. A. HING and W. BONFIELD, Key Eng. Mater. 191–195 (2001) 7

    Google Scholar 

  3. L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487

    Article  CAS  Google Scholar 

  4. I. REHMAN and W. BONFIELD, J. Mater. Sci. Mater. Med. 8 (1997) 1

    Article  CAS  Google Scholar 

  5. D. G. A. NELSON and J. D. B. FEATHERSTONE, Calcif. Tissue Int. 34 (1982) 69

    CAS  Google Scholar 

  6. R. E. WUTHIER, G. S. RICE, J. E. B. WALLACE, R. L. WEAVER, R. Z. LEGEROS and E. D. EANES, Calcif. Tissue Int. 37 (1985) 401

    Article  CAS  Google Scholar 

  7. K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 10 (1999) 135

    Article  CAS  Google Scholar 

  8. A. H. VERHOEF and H. W. D. HARTOG, J. Non-Cryst. Solids 182 (1995) 221

    Article  Google Scholar 

  9. L. GUO, M. HUANG, Y. LENG, J. E. DAVES and X. ZHANG, Key Eng. Mater. 192–195 (2001) 187

    Article  Google Scholar 

  10. C. DU, F. Z. CUI, K. D. GROOT and P. LAYROLLE, Key Eng. Mater. 218–220 (2002) 39

    Google Scholar 

  11. I. I. BARBA, A. J. SALINAS and M. V. REGI, J. Biomed. Mater. Res. 51 (2000) 191

    Article  Google Scholar 

  12. M.T. PHAM, W. MATZ, H. REUTHER, E. RICHTER, G. STEINER and S. OSWALD, J. Biomed. Mater. Res. 59 (2002) 254

    Article  CAS  Google Scholar 

  13. J. BARRALET, S. BEST and W. BONFIELD, J. Biomed. Mater. Res. 41 (1998) 79

    Article  CAS  Google Scholar 

  14. I.R. GIBSON and W. BONFIELD, J. Biomed. Mater. Res. 59 (2002) 697

    Article  CAS  Google Scholar 

  15. J.E. BARRALET, S. ALDRED, A. J. WRIGHT and A. G. A. COOMBES, J. Biomed. Mater. Res. 60 (2002) 360

    Article  CAS  Google Scholar 

  16. S. D. CONZONE, R. F. BROWN, D. E. DAY and G. J. EHRHARDT, J. Biomed. Mater. Res. 60 (2002) 260

    Article  CAS  Google Scholar 

  17. D. E. Clark, C. G. Pantano and L. L. Hench, Corrosion of Glass, Books for Industry and The Glass Industry (1979)

  18. A. YASUKAWA, T. MATSUURA, M. NAKAJIMA, K. KADORI and T. ISHIKAWA, Mater. Res. Bull. 34 (1999) 589

    Article  CAS  Google Scholar 

  19. Lee et al., US patent 6,117,456, September 12, 2000

  20. P. W. BROWN and R. I. MARTIN, J. Phys. Chem. B. 103 (1999) 1671

    Article  CAS  Google Scholar 

  21. B. J. MEENAN, A. BOYD, E. LOVE and M. AKAY, Key Eng. Mater. 192–195 (2001) 15

    Google Scholar 

  22. Z.H. CHENG, A. YASUKAWA, K. KANDORI and T. ISHIKAWA, Langmuir 14 (1998) 6681

    Article  CAS  Google Scholar 

  23. D. J. GREENFIELD and E. D. EANES, Calcif. Tissue Res. 9 (1972) 152

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from the UMR Graduate Center for Materials Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Day, D.E. Reaction of sodium calcium borate glasses to form hydroxyapatite. J Mater Sci: Mater Med 18, 1837–1847 (2007). https://doi.org/10.1007/s10856-007-3053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3053-2

Keywords

Navigation