Skip to main content
Log in

An improved method for the measurement of mechanical properties of bone by nanoindentation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanoindentation is widely used to measure the mechanical properties of bio-tissues. However, viscoelastic effects during the nanoindentation are seldom considered rigorously, although they are in general very significant in bio-tissues. In this study, a recently developed method for correcting the viscoelastic effects during nanoindentation is applied to mice bone samples. This method is found to yield reliable elastic modulus and hardness results from forelimb and femur cortical bone samples of C57 BL/6N and ICR mice. The creep properties of the samples are also characterized by a novel procedure using nanoindentation. The measured mechanical properties correlate well with the calcium content of the bone samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. MILGROM, A. FINESTONE, A. HAMEL, V. MANDES, D. BURR and N. SHARKEY, J. Biomech. 37 (2004) 947.

    Article  CAS  Google Scholar 

  2. E. R. C. DRAPER and A. E. GOODSHIP, J. Biomech. 36 (2003) 1497.

    Article  Google Scholar 

  3. C. M. FLAHIFF, D. A. NARMONEVA, J. L. HUEBNER, V. B. KRAUS, F. GUILAK and L. A. SETTON, J. Biomech. 35 (2002) 1285.

    Article  Google Scholar 

  4. D. VASHISHTH, G. J. GIBSON, J. I. KHOURY, M. B. SCHAFFLER, J. KIMURA and D. P. FYHRIE, Bone 28 (2001) 195.

    Article  CAS  Google Scholar 

  5. X. M. WANG, F. Z. CUI, J. GE, Y. ZHANG and C. MA, Biomaterials 23 (2002) 4557.

    Article  CAS  Google Scholar 

  6. S. HENGSBERGER, A. KULIK and P. H. ZYSSET, Bone 30 (2002) 178.

    Article  CAS  Google Scholar 

  7. J. Y. RHO, T. Y. TSUI and G. M. PHARR, Biomaterials 18 (1997) 1325.

    Article  CAS  Google Scholar 

  8. C. H. TURNER, J. Y. RHO, Y. TAKANO, T. Y. TSUI and G. M. PHARR, J. Biomech. 32 (1999) 437.

    Article  CAS  Google Scholar 

  9. J. Y. RHO, P. ZIOUPOS, J. D. CURREY and G. M. PHARR, J. Biomech. 35 (2002) 189.

    Article  CAS  Google Scholar 

  10. C. E. HOFFLER, K. E. MOORE, K. KOZLOFF, P. K. ZYSSET, M. B. BROWN and S. A. GOLDSTEIN, Bone 26 (2000) 603–609.

    Article  CAS  Google Scholar 

  11. Y. ZHANG, F. Z. CUI, X. M. WANG, Q. L. FENG and X. D. ZHU, Bone 30 (2002) 541.

    Article  CAS  Google Scholar 

  12. J. Y. RHO and G. M. PHARR, J. Mater. Sci. Mater. Med. 10 (1999) 485.

    Article  CAS  Google Scholar 

  13. P. K. ZYSSET, X. E. GUO, C. E. HOFFLER, K. E. MOORE and S. A. GOLDSTEIN, J. Biomech. 32 (1999) 1005.

    Article  CAS  Google Scholar 

  14. A. J. BUSYBY, V. L. FERGUSON and A. BOYDE, J. Mat. Res. 19 (2004) 249.

    Article  Google Scholar 

  15. W. C. OLIVER and G. M. PHARR, J. Mat. Res. 7 (1992) 1564.

    Google Scholar 

  16. R. LAKES and S. SAHA, J. Biomech. Eng. 102 (1980) 178.

    Article  CAS  Google Scholar 

  17. G. FENG and A. H. W. NGAN, J. Mat. Res. 17 (2002) 660.

    CAS  Google Scholar 

  18. A. H. W. NGAN and B. TANG, J. Mat. Res. 17 (2002) 2604.

    CAS  Google Scholar 

  19. B. TANG and A. H. W. NGAN, J. Mat. Res. 18 (2003) 1141.

    CAS  Google Scholar 

  20. T. CHUDUBA and F. RICHTER, Sur. Coat. Tech. 148 (2001) 191.

    Article  Google Scholar 

  21. A. H. W. NGAN, H. T. WANG, B. TANG and K. Y. SZE, Int. J. Solids Struct. 42 (2005) 1831.

    Article  Google Scholar 

  22. G. FENG and A. H. W. NGAN, Scripta Mater. 45 (2001) 971.

    Article  CAS  Google Scholar 

  23. B. TANG and A. H. W. NGAN, Soft Mat. 2 (2004) 125.

    Article  CAS  Google Scholar 

  24. Y. T. CHENG, W. Y. NI and C. M. CHENG, J. Mat. Res. 20 (2005) 3061.

    Article  CAS  Google Scholar 

  25. I. SNEDDON, Int. J. Eng. Sci. 3 (1965) 47.

    Article  Google Scholar 

  26. B. TANG and A. H. W. NGAN, Soft Mat. 2 (2004) 183.

    Article  CAS  Google Scholar 

  27. B. LAWN, Fracture of Brittle Solids, 2nd edn (Cambridge University: Cambridge, UK, 1993 p. 249).

    Google Scholar 

  28. J. L. LOUBET, W. C. OLIVER and B. N. LUCAS, J. Mater. Res. 15 (2000) 1195.

    CAS  Google Scholar 

  29. A. CHAKRAVARTULA and K. KOMVOPOULOS, Appl. Phys. Lett. 88 (2006) 131901.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administration Region, P. R. China (Project no. HKU7194/04E). We also thank Dr. K.M.C. Cheung for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. W. Ngan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, B., Ngan, A.H.W. & Lu, W.W. An improved method for the measurement of mechanical properties of bone by nanoindentation . J Mater Sci: Mater Med 18, 1875–1881 (2007). https://doi.org/10.1007/s10856-007-3031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3031-8

Keywords

Navigation