Skip to main content
Log in

Development of graded hydroxyapatite/CaCO3 composite structures for bone ingrowth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ceramic composites composed of constituents with different bone cell reactions present an interesting consideration for a new bone replacement material. The first component of the composite used in this study, hydroxyapatite, is known to be replaced by natural tissue significantly slower than the second, calcium carbonate, which has limited structural stability. A graded hydroxyapatite/calcium carbonate composite with bimodal component distribution was developed using a combined slip infiltration and dip-coating technique from a porous polyurethane sponge replica. A graded hydroxyapatite scaffold with porosities from 5 to 90% was produced and then infiltrated with a calcium carbonate slip and sintered. The resultant composite had improved mechanical properties compared with the monolith as measured by crushing and moduli tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. E. HOLMES, R. W. BUCHOLZ and V. MONNEY, J. Bone Jt. Surg. 68A (1986) 904

    Google Scholar 

  2. L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487

    Article  CAS  Google Scholar 

  3. F. R. CHICHOCKI, K. P. TRUMBLE and J. RÖDEL, J. Am. Ceram. Soc. 81 (1998) 1661

    Article  Google Scholar 

  4. W. POMPE, H. WORCH, M. EPPLE et al. Mat. Sci. Eng. A 362 (2003) 40

    Article  CAS  Google Scholar 

  5. R. B. MARTIN, Materials Science Forum 293 (1999) 5

    CAS  Google Scholar 

  6. U. DEISINGER, F. STENZEL and G. ZIEGLER, Key Eng. Mat. 264–268 (2004) 2047

    Google Scholar 

  7. M. TILBROOK, R. J. MOON and M. HOFFMAN, Mat. Sci. Eng. A 393 (2005) 170

    Article  CAS  Google Scholar 

  8. R. Z. LEGEROS and J. P. LEGEROS, Key Eng. Mat. 240–242 (2003) 3

    Article  Google Scholar 

  9. F. MONCHAU, A. LEFÈVRE, M. DESCHAMPS et al. Biomolecular Eng. 19 (2002) 143

    Article  CAS  Google Scholar 

  10. K. T. KOO, G. POLOMENI, M. QAHASH et al. J. Clin. Periodontology 32 (2005) 104

    Article  Google Scholar 

  11. M. F. ASHBY, Metall. Trans. A, 14 (1983) 1755

    Article  Google Scholar 

  12. ASTM standard C 1259–98

  13. R. M. SPRIGGS, J. Am. Ceram. Soc. 44 (1961) 628

    Article  CAS  Google Scholar 

  14. M. A. LOPES, R. F. SILVA, F. J. MONTEIRO and J. D. SANTOS, Biomaterials 21 (2000) 749

    Article  CAS  Google Scholar 

  15. R. W. Rice, Treatise on Materials Science and Technology 11 Properties and Microstructure, edited by R. K. Mac Crone (Academic: New York) p. 191

  16. K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci: Mater. Med. 10 (1999) 135

    Article  CAS  Google Scholar 

  17. J. D. BOBYN, R. M. PILLIAR and H. U. CAMERON, Clin. Orthop. Rel. Res. 150 (1980) 263

    Google Scholar 

  18. F. R. ROSE, L. A. CYSTER, D. M. GRANT et al. Biomaterials 25 (2004) 5507

    Article  CAS  Google Scholar 

  19. H. SCHLIEPHAKE, F. W. NEUKAM and D. KLOSA, Int. J. Oral Maxillofac. Surg. 20 (1991) 53

    Article  CAS  Google Scholar 

  20. K. FUJIHARA, M. KOTAKI and S. RAMAKRISHNA, Biomaterials 26 (2005) 4139

    Article  CAS  Google Scholar 

  21. T. KOKUBO, H. M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161

    Article  CAS  Google Scholar 

  22. C. SCHILLER, C. RASCHE and M. WEHMOLLER, Biomaterials 25 (2004) 1239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge previous work by Achim Neubrand (Fraunhofer-Institut für Werkstoffmechanik, Freiburg, Germany), Matthew Tilbrook and Lyndal Kidson (both former PhD students at the School of Materials Science and Engineering, UNSW) on sponge replica methods for graded alumina. This work provided the basis to develop the porous hydroxyapatite structures described in this paper. The authors also thank Katie Levick and Jenny Norman (both of the Electron Microscope Unit, UNSW) for their many hours spent in optimising the Micro-CT image capturing parameters, which greatly improved the quality of the results. Lastly, the authors thank Viera Piergova (Electron Microscope Unit, UNSW) for the training in SEM use and constant suggestions for improvement of capturing SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heilmann, F., Standard, O.C., Müller, F.A. et al. Development of graded hydroxyapatite/CaCO3 composite structures for bone ingrowth. J Mater Sci: Mater Med 18, 1817–1824 (2007). https://doi.org/10.1007/s10856-007-3028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3028-3

Keywords

Navigation