Skip to main content
Log in

Effect of silicon on the formation of silk fibroin/calcium phosphate composite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The silk fibroin/calcium phosphate composites were prepared by adding the different amount of Na2SiO3 to assess the effect of silicon on the HA (hydroxyapatite) formation in the composites. FTIR and XRD results suggested that the inorganic phase was constituted mainly by the amorphous DCPD (dicalcium phosphate dehydrate), a precursor of HA in the bone mineral, when the composites were prepared at the final Na2SiO3 concentration lower than 0.008%. Otherwise, HA was formed as the predominant one in the as-prepared composite, accompanied with a conformational transition in the organic phase of silk fibroin protein from silk I (α-helix and/or polyglycine II (31–helix) conformations) to silk II (antiparallel β-sheet conformation). SEM images showed the different morphologies with the samples, i.e., sheet-like crystals in the composites prepared at a low Na2SiO3 concentration and rod-like bundles in other composites. The rod-like bundles were connected together to form the porous network, due to the fact that the HA crystals grew with the aggregation of silk fibroin, and further accreted onto the silk fibroin fibrils. TG curves indicated that the composites prepared with a certain amount of additional SiO 2−3 had the higher thermal stability because of its high molecular orientation and crystallinity, and high water-holding capacity due to the porous microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. DUCHEYNE and Q. QIU, Biomaterials 20 (1999) 2287

    Article  CAS  Google Scholar 

  2. L. WANG, R. NEMOTO and M. SNNA, J. Nanoparticle Res. 4 (2002) 535

    Article  CAS  Google Scholar 

  3. X. D. KONG, F. Z. CUI, X. M. WANG, M. ZHANG and W. ZHANG, J. Cryst. Growth 270 (2004) 197

    Article  CAS  Google Scholar 

  4. M. C. CHANG, T. IKOMA, M. KIKUCHI and J. TANAKA, J. Mater. Sci. Lett. 20 (2001) 1199

    Article  CAS  Google Scholar 

  5. I. YAMAGUCHI, K. TOKUCHI, H. FUKUZAKI, Y. KOYAMA, K. TAKAKUDA, H. MONMA and J. TANAKA, J. Biomed. Mater. Res. 55 (2001) 20

    Article  CAS  Google Scholar 

  6. J. YAO and T. ASAKURA, in Encyclopedia of Biomaterials and Biomedical Engineering, edited by G. E. WNEK and G. L. BOWLIN (Marcel Dekker, Inc., New York, 2004) p. 1363

  7. G. H. ALTMAN, F. DIAZ, C. JAKUBA, T. CALABRO, R. L. HORAN, J. CHEN, H. LU, J. RICHMOND and D. L. KAPLAN, Biomaterials 24 (2003) 401

    Article  CAS  Google Scholar 

  8. D. McConnel, in “Biologic Apatites” (Springer, Berlin, 1973) p. 68

  9. A. S. POSNER, Physiol. Rev. 49 (1969) 760

    CAS  Google Scholar 

  10. K. A. HING, P. A. REVELL, N. SMITH and T. BUCKLAND, Biomaterials 27 (2006) 5014

    Article  CAS  Google Scholar 

  11. R. Z. LEGEROS and J. P. LEGEROS, in An Introduction to Biocramics, edited by L. L. HENCH and J. WILSON (World Scientific, Singapore, 1993) p. 139

  12. M. O. YAMADA, Y. TOHNO, S. TOHNO, M. UTSUMI, Y. MORIWAKE and G. YAMADA, Biol. Trace Elem. Res. 95 (2003) 113

    Article  CAS  Google Scholar 

  13. E. M. CARLISLE, Science 167 (1970) 279

    Article  CAS  Google Scholar 

  14. E. M. CARLISLE, Science 178 (1972) 619

    Article  CAS  Google Scholar 

  15. K. SCHWARZ and D. B. MILNE, Nature 239 (1972) 333

    Article  CAS  Google Scholar 

  16. A. E. POTER, N. PATEL, J. N. SKEPPER, S. M. BEST and W. BONELD, Biomaterials 24 (2003) 4609

    Article  CAS  Google Scholar 

  17. D. M. REFFITT, N. OGSTON, R. JUGDAOHSINGH, H. F. J. CHEUNG, B. A. J. EVANS, R. P. H. THOMPSON, J. J. POWELL and G. N. HAMPSON, Bone 32 (2003) 127

    Article  CAS  Google Scholar 

  18. H. WEN, Q. LIU, J. WIJN, K. DE GROOT and F. CUI, J. Mater. Sci.: Mater. Med. 9 (1998) 121

    Article  CAS  Google Scholar 

  19. P. FRAYSSINET, F. BRAYE and G. WEBER, J. Scann. Microsc. 19 (1997) 253

    CAS  Google Scholar 

  20. M. J. GLIMCHER, L. C. BONAR, M. D. GRYNPAS, W. J. LANDIS0 and A. H. ROUFOSSE, J. Cryst. Growth 53 (1981) 100

    Article  CAS  Google Scholar 

  21. G. FREDDI, P. MONTI, M. NAGURA, Y. GOTO and M. TSUKADA, J. Polym. Sci. B: Polym. Phys. 35 (1997) 841

    Article  CAS  Google Scholar 

  22. D. WILSON, R. VALUZZI and D. KAPLAN, Biophys. J. 78 (2000) 2690

    CAS  Google Scholar 

  23. X. D. KONG, X. M. WANG, X. YU and F. Z. CUI, Key Eng. Mater. 288–289 (2005) 191

    Article  Google Scholar 

  24. P. SEPULVEDA, J. G. P. BINNER, S. O. ROGERO, O. Z. HIGA and J. C. BRESSIANI, J. Biomed. Mater. Res. 50 (2000) 27

    Article  CAS  Google Scholar 

  25. T. ASAKURA, A. KUZUHARA, R. TABETA and H. SAITO, Macromolecules 18 (1984) 1841

    Article  Google Scholar 

  26. M. TSUKADA, M. OBO, H. KATO, G. FREDDI and F. ZANETTI, J. Appl. Polym. Sci. 60 (1996) 1619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0654), the National Natural Science Foundation of China (No. 20404011 and 10672145) and Zhejiang Natural Science Foundation of China (No. R404066 and Y205468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Ming Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wei, KM., Lin, F. et al. Effect of silicon on the formation of silk fibroin/calcium phosphate composite. J Mater Sci: Mater Med 19, 577–582 (2008). https://doi.org/10.1007/s10856-007-3004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3004-y

Keywords

Navigation