Skip to main content
Log in

The effect of oxide thickness on osteoblast attachment and survival on NiTi alloy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

NiTi alloy is used in various medical applications and the surface titanium oxide layer produced naturally or enhanced artificially has been thought to offer a protecting film against allergic and toxic effects of nickel (Ni). In this study, we investigated the effect of different oxide layer thicknesses on the survival and attachment of osteoblastic cells (ROS-17/2.8). AFM, X-ray diffraction and electrical resistance measurements were used to analyze the surface properties of oxidized NiTi samples and the effect of oxidation on material properties. The results clearly showed that straight correlation between oxide thickness and cellular well-being cannot be maid. However, the different thicknesses of oxide layer on NiTi had surprising impacts on cellular responses and also to the properties of the metal alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. G. GRIFFITH, Ann. N Y Acad. Sci. 961 (2002) 83

    Article  CAS  Google Scholar 

  2. Z. SCHWARTZ and B. D. BOYAN, J. Cell. Biochem. 56 (1994) 340

    Article  CAS  Google Scholar 

  3. J. Y. MARTIN, Z. SCHWARTZ, T. W. HUMMERT, D. M. SCHRAUB, J. SIMPSON, J. LANKFORD Jr, D. D. DEAN, D. L. COCHRAN and B. D. BOYAN, J. Biomed. Mater. Res. 29 (1995) 389

    Article  CAS  Google Scholar 

  4. R. K. SINHA, F. MORRIS, S. A. SHAH and R. S. TUAN, Clin. Orthop. 305 (1994) 258

    Google Scholar 

  5. W. J. BUEHLER and F. E. WANG, Ocean Eng. 1 (1968) 105

    Article  Google Scholar 

  6. T. SABURI, in “Shape memory materials”, edited by K. OTSUKA and C. M. WAYMANN (Cambridge University Press, New York, 1998), p. 49

  7. D. M. BRUNETTE, P. TENGVALL, M. TEXTOR and P. THOMSEN, “Titanium in medicine” (Springer-Verlag, Berlin-Heidelberg-New York, 2001), p. 171

  8. J. VAN HUMBEECK, R. STALMANS and P. A. BESSELINK, in “Metals as biomaterials”, edited by J. A. HELSEN and H. J. BREME (Chichester-Wiley, 1998), p. 73

  9. D. J. WEVER, A. G. VELDHUIZEN, J. DE VRIES, H. J. BUSSCHER, D. R. UGES and J. R. VAN HORN, Biomaterials 19 (1998) 761

  10. S. D. PLANT, D. M. GRANT and L. LEACH, Biomaterials 26 (2005) 5359

    Article  CAS  Google Scholar 

  11. S. TRIGWELL, R. D. HAYDEN, K. F. NELSON and G. SELVADURAY, Surf. Interface Anal. 26 (1998) 483

    Article  CAS  Google Scholar 

  12. G. S. FIRSTOV, R. G. VITCHEV, H. KUMAR, B. BLANPAIN and J. VAN HUMBEECK, Biomaterials 23 (2002) 4863

    Article  CAS  Google Scholar 

  13. D. A. ARMITAGE, T. L. PARKER and D. M. GRANT, J. Biomed. Mater. Res. 66A (2003) 129

    Article  CAS  Google Scholar 

  14. M. C. BECKERLE, J. Cell Biol. 103 (1986) 1679

    Article  CAS  Google Scholar 

  15. C. E. TURNER, J. R. GLENNEY Jr and K. BURRIDGE, J. Cell Biol. 111 (1990) 1059

    Article  CAS  Google Scholar 

  16. ASTM Diffraction Data File (ASTH, Philadelphia, 1969), 73-2224, 21-1276

  17. A. KAPANEN, J. ILVESARO, A. DANILOV, J. RYHÄNEN, P. LEHENKARI and J. TUUKKANEN, Biomaterials 23 (2002) 645

    Article  CAS  Google Scholar 

  18. P. Kostad, “High-temperature oxidation in metals” (Wiley, New York), p. 966

  19. D. A. ARMITAGE and D. M. GRANT, Mater. Sci. Eng. A00 (2003) 89

    Google Scholar 

  20. R. O. HYNES, Cell 48 (1987) 549

    Article  CAS  Google Scholar 

  21. E. ZAMIR and B. GEIGER, J. Cell Sci. 114 (2001) 3583

    CAS  Google Scholar 

  22. O. CISSE, O. SAVADOGO, M. WU and L. H. YAHIA, J. Biomed. Mater. Res. 61 (2002) 339

    Article  CAS  Google Scholar 

  23. A. DIENER, B. NEBE, F. LUTHEN, P. BECKER, U. BECK, H. G. NEUMANN and J. RYCHLY, Biomaterials 26 (2005) 383

    Article  CAS  Google Scholar 

  24. N. FAUCHEUX, R. SCHWEISS, K. LUTZOW, C. WERNER and T. GROTH, Biomaterials 25 (2004) 2721

    Article  CAS  Google Scholar 

  25. N. FAUCHEUX and M. D. NAGEL, Biomaterials 23 (2002) 2295

    Article  CAS  Google Scholar 

  26. B.-Z. KATZ, E. ZAMIR, A. BERSHADSKY, Z. KAM, K. M. YAMADA and B. GEIGER, Mol. Biol. Cell 11 (2000) 1047

    CAS  Google Scholar 

  27. A. J. GARCIA, M. D. VEGA and D. BOETTIGER, Mol. Biol. Cell 10 (1999) 785

    CAS  Google Scholar 

  28. R. THULL, Biomol. Eng. 19 (2002) 43

    Article  CAS  Google Scholar 

  29. B. G. KESELOWSKY, D. M. COLLARD and A. J. GARCIA, J. Biomed. Mater. Res. 66 (2003) 247

    Article  CAS  Google Scholar 

  30. H. NYGREN, P. TENGVALL and I. LUNDSTRÖM, J. Biomed. Mater. Res. 34 (1997) 487

    Article  CAS  Google Scholar 

  31. F. F. VOLKENSTEIN (Nauka, Moscow, 1973), p. 234 (in Russian)

  32. C. M. WAYMAN, in “Proceedings of the international symposium on shape memory effects and applications, Toronto, 1975”, edited by J. Perkins (Plenum Press, New York, 1975)

Download references

Acknowledgments

The authors thank Ms. Taina Poikela for technical assistance. This work was supported in part by the National Technology Agency of Finland (40245/03). V. M. was supported by the National Graduate School for Musculoskeletal Diseases in Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Muhonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhonen, V., Heikkinen, R., Danilov, A. et al. The effect of oxide thickness on osteoblast attachment and survival on NiTi alloy. J Mater Sci: Mater Med 18, 959–967 (2007). https://doi.org/10.1007/s10856-006-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0082-1

Keywords

Navigation