Skip to main content
Log in

Supramolecular structure of human aortic valve and pericardial xenograft material: atomic force microscopy study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Pericardial tissue (bovine or porcine), chemically stabilized with glutaraldehyde (GA), is widely used in cardiovascular surgery in the form of bioprosthetic valves. GA reacts with tissue proteins and creates inter- and intra-molecular cross-links, resulting in improved durability. However, tissue calcification and mechanical damage are still unresolved problems. The purpose of this study was to examine the surface topography of normal human aortic valve and GA-stabilized porcine pericardium tissue in order to gain comparative insight into supramolecular structure of both tissues. The analysis was focused on morphologic evaluation of collagen constituents of the tissues. Atomic force microscopy working in the contact mode in air was employed in the study. Considerable diversity in the spatial orientation of collagen fibrils for the human aortic valve and pericardial tissue were observed. It was found that different forms of collagen fibril packing, i.e. dense and “in phase” or loose, could have an impact on the collagen D-banding pattern. Stabilization with GA introduced significant changes in the surface topography of collagen fibrils and in their spatial organization on the tissue surface. Strong disturbance in the fibril’s D-spacing was observed. It was also suggested, that the observed structural changes at the supramolecular level might make an important contribution to the progressive damage and calcification of the tissue. The presented results demonstrate that the AFM method can be useful for non-destructive structural characterization of heart valves and bioprosthetic heart valve material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. J. SCHOEN and R. J. LEVY, J. Biomed. Mater. Res. 47 (1999) 439

    Article  CAS  Google Scholar 

  2. M. H. YACOB and L. H. COHN, Circulation 109 (2004) 942

    Article  Google Scholar 

  3. C. K. BREUER, B. A. METTLER, A. TIFFANY, V. L. SALES, F. J. SCHOEN and J. E. MAYER, Tissue Engineering 10 (2004) 1725

    Article  CAS  Google Scholar 

  4. E. JORGE-HERRERO, J. M. GARCIA PAEZ, DEL CASTILLO-OLIVARES RAMOS, J. Applied Biomater. Biomech. 3 (2005) 67

    CAS  Google Scholar 

  5. E. JORGE-HERRERO, P. FERNANDEZ, J. TURNAY, N. OLMO, P. CALERO, R. GARCIA, I. FREILE and J. L. CASTILLO-OLIVARES, Biomaterials 20 (1999) 539

    Article  CAS  Google Scholar 

  6. J. M. HURLE, E. COLVE and M. A. FERNANDEZ-TERAN, Anat. Embryol. 172 (1985) 61

    Article  CAS  Google Scholar 

  7. M. MIRZAIE, T. MEYER, P. SCHWARTZ, S. LOTFI, A. RASTAN and F. SCHÖNDUBE, Ann. Thorac. Cardiovasc. Surg. 8 (2002) 24

    Google Scholar 

  8. M. MIRZAIE, M. SCHULTZ, P. SCHWARTZ, M. COULIBALY and F. SCHÖNDUBE, Ann. Thorac. Cardiovasc. Surg. 9 (2003) 163

    Google Scholar 

  9. S. L. HILBERT, V. J. FERRANS and W. M. SWANSON, J. Biomed. Mater. Res. 20 (1986) 1411

    Article  CAS  Google Scholar 

  10. D. DATTA, P. K. KUNDU and B. N. BANDYOPADHYAY, Artif. Organs, 23 (1999) 372.

    Article  CAS  Google Scholar 

  11. B. P. JENA and J. K. H. HÖRBER, 2002, in “Atomic force microscopy in cell biology. Methods in cell biology” (Amsterdam, London, New York: Academic Press) p. 1–64.

    Google Scholar 

  12. J. M. GARCIA PAEZ, E. JORGE-HERRERO, A. CARRERA, I. MILLAN, A. ROCHA, J. SALVADOR, J. MENDEZ, G. TELLEZ and J. L. CASTILLO-OLIVARES, J. Mater. Sci. Mater. Med, 12 (2001) 425

    Article  CAS  Google Scholar 

  13. J. M. GARCIA PAEZ, A. CARRERA, E. J. HERRERO, I. MILLAN, A. ROCHA, A. CORDON, N. SAINZ, J. MENDEZ and J. L. CASTILLO-OLIVARES, J. Biomater. Appl. 16 (2001) 68

    Article  CAS  Google Scholar 

  14. J. M. GARCIA-PAEZ, E. JORGE, A. ROCHA, J. L. CASTILLO-OLIVARES, I. MILLAN, A. CARRERA, A. CORDON, G. TELLEZ and R. BURGOS, J. Mater. Sci. Mater. Med. 13 (2002) 477

    Article  CAS  Google Scholar 

  15. J. M. GARCIA-PAEZ, E. JORGE-HERRERO, A. CARRERA, I. MILLAN, A. ROCHA, P. CALERO, A. CORDON, J. SALVADOR, N. SAINZ, J. MENDEZ and J. L. CASTILLO-OLIVARES, Biomaterials, 22 (2001) 2759

    Article  CAS  Google Scholar 

  16. W. A. NAIMARK, J. M. LEE, H. LIMEBACK and D. T. CHEUNG, Am. J. Physiol. 263 (HEART CIRC. PHYSIOL. 32) (1992) H1095

    CAS  Google Scholar 

  17. J. T. ROSENTHAL, B. W. SHAW and R. L. HARDESTY, Ann. Surg., 198 (1983) 617

    Article  CAS  Google Scholar 

  18. D. SIMIONESCU, A. SIMIONESCU, R. DEAC, J. Biomed. Mater. Res. 27 (1993) 697

    Article  CAS  Google Scholar 

  19. A. JAYAKRISHNAN and S. R. JAMEELA, Biomaterials 17 (1996) 471

    Article  CAS  Google Scholar 

  20. M. JASTRZEBSKA, B. BARWINSKI, I. MROZ, A. TUREK, J. ZALEWSKA-REJDAK and B. CWALINA, Eur. Phys. J. E, 16 (2005) 381

    Article  CAS  Google Scholar 

  21. A. STEVENS and J. LOWE, 1997, in “Human histology” (Amsterdam, London, New York: Mosby) p. 147

    Google Scholar 

  22. D. R. BASELT, J. P. REVEL and J. D. BALDESCHWIELER, Biophys. J. 65 (1993) 2644

    Article  CAS  Google Scholar 

  23. I. REVENKO, F. SOMMER, D. T. MINK, R. GARRONE and J. M. FRANC, Biol. Cell 80 (1994) 67

    Article  CAS  Google Scholar 

  24. M. RASPANTI, A. ALESSANDRINI, V. OTTANI and A. RUGGERI, J. Struct. Biol. 119 (1997) 118

    Article  CAS  Google Scholar 

  25. M. VENTURONI, T. GUTSMANN, G. E. FANTNER, J. H. KINDT and P. K. HANSMA, Biochem. Biophys. Res. Commun. 303 (2003) 508

    Article  CAS  Google Scholar 

  26. M. JASTRZEBSKA, R. WRZALIK, A. KOCOT, J. ZALEWSKA-REJDAK and B. CWALINA, J. Raman Spectrosc. 34 (2003) 424

    Article  CAS  Google Scholar 

  27. M. E. NIMNI and R. D. HARKNES, 1998, in “Collagen:biochemistry Vol.1” (Boca Raton, FL: CRC Press) p. 1–7

    Google Scholar 

  28. B.B. TOMAZIC, Zeitschrift fur Kardiologie, Band 90, suppl. 3 (2001) III68

  29. J. M. CONNOLLY, I. ALFERIEV, J. N. CLARK-GRUEL, N. EIDELMAN, M. SACKS, E. PALMATORY, A. KRONSTEINER, S. DEFELICE, J. XU, R. OHRI, N. NARULA, N. VYAVAHARE and R. J. LEVY, Am. J. Pathol. 166 (2005) 1

    CAS  Google Scholar 

  30. D. MIKROULIS, D. MAVRILAS, J. KAPOLOS, P. G. KOUTSOUKOS and C. LOLAS, J. Mater. Sci. Mater. Med. 13 (2002) 885

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. J. Nozynski from the Department of Histology and Embryology of the Medical University of Silesia, Poland, for the preparation of human aortic valve and helpful discussion.

This work was supported by the State Committee for Scientific Research (KBN, Poland) under Project No. NN-2-365/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Jastrzebska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastrzebska, M., Mróz, I., Barwiński, B. et al. Supramolecular structure of human aortic valve and pericardial xenograft material: atomic force microscopy study. J Mater Sci: Mater Med 19, 249–256 (2008). https://doi.org/10.1007/s10856-006-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0049-2

Keywords

Navigation