Skip to main content

Advertisement

Log in

Biological response to pre-mineralized starch based scaffolds for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

It is known that calcium-phosphate (Ca-P) coatings are able not only to improve the bone bonding behaviour of polymeric materials, but at the same time play a positive role on enhancing cell adhesion and inducing the differentiation of osteoprogenitor cells. Recently an innovative biomimetic methodology, in which a sodium silicate gel was used as a nucleative agent, was proposed as an alternative to the currently available biomimetic coating methodologies. This methodology is especially adequate for coating biodegradable porous scaffolds. In the present work we evaluated the influence of the referred to treatment on the mechanical properties of 50/50 (wt%) blend of corn starch/ethylene-vinyl alcohol (SEVA-C) based scaffolds. These Ca-P coated scaffolds presented a compressive modulus of 224.6 ± 20.6 and a compressive strength of 24.2 ± 2.20. Cytotoxicity evaluation was performed according ISO/EN 10993 part 5 guidelines and showed that the biomimetic treatment did not have any deleterious effect on L929 cells and did not inhibit cell growth. Direct contact assays were done by using a cell line of human osteoblast like cells (SaOS-2). 3 × 105 cells were seeded per scaffold and allowed to grow for two weeks at 37C in a humidified atmosphere containing 5% CO2. Total protein quantification and scanning electron microscopy (SEM) observation showed that cells were able to grow in the pre-mineralized scaffolds. Furthermore cell viability assays (MTS test) also show that cells remain viable after two weeks in culture. Finally, protein expression studies showed that after two weeks osteopontin and collagen type I were being expressed by SaOS-2 cells seeded on the pre-mineralized scaffolds. Moreover, alkaline phosphatase (ALP) activity was higher in the supernatants collected from the pre-mineralized samples, when compared to the control samples (non Ca-P coated). This may indicate that a faster mineralization of the ECM produced on the pre-mineralized samples was occurring. Consequently, biomimetic pre-mineralization of starch based scaffolds can be a useful route for applying these materials on bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. PETITE, V. VIATEAU, W. BENSAID, A. MEUNIER, C. DE POLLAK, M. BOURGUIGNON, K. OUDINA, L. SEDEL and G. GUILLEMIN, Nat. Biotech. 18 (2000) 959.

    Google Scholar 

  2. R. SPITZER, C. PERKA, K. LINDENHAYN and H. ZIPPEL, J. Biomed. Mat. Res. 59 (2002) 690.

    Google Scholar 

  3. G. C. SIMON, C. A. KHATRI, S. A. WIGHT and F. W. WANG, J. Orthop. Res. 20 (2002) 473.

    Google Scholar 

  4. R. LANGER and J.P. VACANTI, Science 260 (1993) 920.

    CAS  PubMed  Google Scholar 

  5. S. YANG, K. LEONG, Z. DU and C. CHUA, Tissue Eng. 7(6) (2001) 679.

    Google Scholar 

  6. P. A. RAMIRES, A. ROMITO, F. COSENTINO and E. MILELLA, Biomaterials 22 (2001) 1467.

    Google Scholar 

  7. Y. ZHANG and Z. ZHANG, J. Biomed. Mat. Res. 61 (2002) 1.

    Google Scholar 

  8. H. YUAN, Z. YANG, J. D. DE BRUIJN, K. DE GROOT and X. ZHANG, Biomaterials 22 (2001) 2617.

    Article  CAS  PubMed  Google Scholar 

  9. P.J. TER BRUGGE, J. C. G. WOLK and J. A. JANSEN, J. Biomed. Mat. Res. 60 (2002) 70.

    Google Scholar 

  10. J. E. G HULSHOFF, K. VAN DIJK, J. E. DE RUIJTER, F. J. R. RIETVELD, L. A. GINSEL and J. A. JANSEN, J. Biomed. Mat. Res. 40 (1998) 464.

    Google Scholar 

  11. Y.-L. CHANG, C. M. STANDFORD, J. S. WEFEL and J. C KELLER, Int. J. Oral Maxillofac. Implants 14 (1999) 239.

    Google Scholar 

  12. J. L. ONG, D. R. VILLARREAL, R. CAVIN and K. MA, J. Mat. Sci.: Mat. Med. 12 (2001) 491.

    Google Scholar 

  13. M. E. GOMES, J. S. GODINHO, D. TCHALAMOV, A. M. CUNHA and R. L. REIS, Mat. Sci. & Eng. C 20 (2002) 19.

    Google Scholar 

  14. M. E. GOMES, A. S. RIBEIRO, P. B. MALAFAYA, R. L. REIS and A. M. CUNHA, Biomaterials 22 (2001) 883.

    Article  Google Scholar 

  15. A. J. SALGADO, M. E. GOMES, A. CHOU, O. P. COUTINHO, R. L. REIS and D. W HUTMACHER, Mat. Sci. Eng. C 20 (2002) 27.

    Google Scholar 

  16. A. J. SALGADO, O. P. COUTINHO and R. L. REIS, Tissue Eng. 10 (2004) 665.

    Google Scholar 

  17. R. L. REIS, A. M. CUNHA, M. H. FERNANDES and R. N. CORREIA, J. Mat. Sci.: Mat. Med. 8 (1997) 897.

    Google Scholar 

  18. A. L. OLIVEIRA, C. ELVIRA, B. VåAA SQUEZ, J. SAN ROMAN and R. L. REIS, J. Mat. Sci.: Mat. Med. 10 (1999) 827.

    Google Scholar 

  19. A. L. OLIVEIRA, P. B. MALAFAYA and R. L. REIS, Biomaterials 24 (2003) 2575.

    Google Scholar 

  20. Iso/document 10993. Biological compatibility of medical devices-Part 5. Test for cytotoxicity: in vitromethods, December 1992.

  21. J. G. STEELE, B. A. DALTON, C. H. THOMAS, K. E. HEALY, T. R. GENGENBACH, and C. D. MCFARLAND, In “Bone Engineering” (M Squared, Toronto, 1999) P. 225.

  22. T. A. HORBETT, K. W. COOPER, K. R. LEW and B. D. RATNER, J. Biomater. Sci.-Polym. Ed. 9 (1998) 1071.

    Google Scholar 

  23. D. P. PIOLETTI, H. TAKEI, T. LIN, P. VAN LANDUYT, Q. J. MA, S. Y KWON and K.-L. P. SUNG, Biomaterials 21 (2000) 1103.

    Google Scholar 

  24. J. P. BIDWELL, M. ALVAREZ, H. FEISTER, J. ONYIA and J. HOCK, J. Bone Min. Res. 13 (1998) 155.

    Google Scholar 

  25. C. S. CHEN, M. MRKSICH, S. HUANG, G. M. WHITESIDES and D. E. INGBER, Science 276 (1997) 1425.

    Article  CAS  PubMed  Google Scholar 

  26. K. VON DER MARK, In “Dynamics Of Bone and Cartilage Metabolism” (Academic Press, 1999) P. 3.

  27. G. XIAO, D. WANG, M. D. BENSON, G. KARSENTY and R.T FRANCESCHI, J. Biol. Chem. 273(49) (2002) 32988.

    Google Scholar 

  28. D. R. SENGER, D. F. WIRTH and R. O. HYNES, Cell 1 (1979) 885.

    Google Scholar 

  29. J. SODEK, B. GANSS and M. D. MCKEE, Crit. Rev. Oral. Bio. Med. 11(3) (2000) 279.

    Google Scholar 

  30. J.E. AUBIN, K. TURKSEN, and J.N.M. HEERSCHE, In “Cellular and Molecular Biology of Bone” (Academic Press, New York, 1994) P. 1.

    Google Scholar 

  31. L. D. SHEA, D. WANG, R. T. FRANCESHI and D. J. MOONEY, Tissue Eng 6(6) (2000) 605.

    Google Scholar 

  32. V. I. SIKAVITSAS, G. N. BANCROFT and A. G. MIKOS, J. Biomed. Mat. Res. 62 (2002) 136.

    Google Scholar 

  33. U. MAYR-WOHLFART, J. FRIEDLER, K.-P. GUNTHER, W. PUHL and S. KESSLER, J. Biomed. Mat. Res. 57 (2001) 132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Salgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, A.J., Figueiredo, J.E., Coutinho, O.P. et al. Biological response to pre-mineralized starch based scaffolds for bone tissue engineering. J Mater Sci: Mater Med 16, 267–275 (2005). https://doi.org/10.1007/s10856-005-6689-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-6689-9

Keywords

Navigation