Skip to main content
Log in

Laser bonded microjoints between titanium and polyimide for applications in medical implants

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioencapsulation of medical implant devices, and neural implant devices in particular, requires development of reliable hermetic joints between packaging materials that are often dissimilar. Titanium-polyimide is one of the biocompatible material systems, which are of interest to our research groups at Wayne State University and Fraunhofer USA. We have found processing conditions for successful joining of titanium with polyimide using near-infrared diode lasers or fiber lasers along transmission bonding lines with widths ranging from 200 to 300 μm. Laser powers of 2.2 and 3.8 W were used to create these joints. Laser-joined samples were tested in a microtester under tensile loading to determine joint strengths. In addition, finite element analysis (FEA) was conducted to understand the stress distribution within the bond area under tensile loading. The FEA model provides a full-field stress distribution in and around the joint that cause eventual failure. Results from the investigation provide an initial approach to characterize laser-fabricated microjoints between dissimilar materials that can be potentially used in optimization of bio-encapsulation design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. JEFFREY, “The Implantable Defibrillator and American Health Care” (2001) p. 408.

  2. S. MIYOSHI, T. IFUKUBE and J. MATSUSHIMA, Transactions of the Institute of Electrical Engineers of Japan Part A 118-A(3) (1998), 260.

    Google Scholar 

  3. U. MEYER-BAESE, A. MEYER-BAESE and H. SCHEICH, IN PROCEEDINGS OF SPIE—THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, (1997), VOL. 3077, P. 582.

    Google Scholar 

  4. R. G. DENNIS, D. E. DOW and J. A. FAULKNE, Medical Engineering & Physics 25(3) (2003) 239.

    Google Scholar 

  5. B. LITT, In IEEE Proceedings of the 23rd Annual Embs International Conference (October 25-28, Istanbul, Turkey, 2001) P. 4124.

  6. J. T. SANTINI, In Proceedings of the 4th Int. Symposium on Biomems, (Cambridge Ma, 2002).

  7. R. S. SHAWGO, A. C. R. GRAYSON, Y. LI and M. J. CIMA, Current Opinion in Solid State and Materials Science 6(4) (2002) 329.

    Google Scholar 

  8. M. L. HANS and A. M. LOWMAN, Current Opinion in Solid State and Materials Science 6(4) (2002) 319.

    Google Scholar 

  9. N. S. PEACHEY and A. Y. CHOW, Journal of Rehabilitation Research and Development 36(4) (1999) 381.

    Google Scholar 

  10. A. Y. CHOW and V. Y. CHOW, Neuroscience Letters 225(1) (1997) 13.

    Google Scholar 

  11. M. S. HUMAYUN, J. D. WEILAND, G. Y. FUJII, R. GREENBERG, R. WILLIAMSON, J. LITTLE, B. MECH, V. CIMMARUSTI, G. V. BOEMEL, G. DAGNELIE and E. D. JUAN Jr, Vision Research 43 (2003) 2573.

    Google Scholar 

  12. J. MEYER, T. STIEGLITZ, O. SCHOLZ, W. HABERER and H. BEUTEL, IEEE Transactions on Advanced Packaging 24(3) (2001) 366.

    Google Scholar 

  13. M. J. WILD, A. GILLNER and R. POPRAWE, Sensors and Actuators A 93 (2001) 63.

    Google Scholar 

  14. G. NEWAZ, A. MIAN, L. VENDRA, D. GEORGIEV, T. MAHMOOD, G. AUNER, R. WITTE, and H. HERFURTH, IN PROCEEDINGS OF THE INTERNATIONAL CONGRESS ON MATERIALS SCIENCE and NANOTECHNOLOGIES (EUROPEAN ACADEMY OF SCIENCE, BRUSSELS, BELGIUM, OCTOBER 2003).

    Google Scholar 

  15. V. A. KAGAN, R. G. BRAY and W. P. KUHN, Journal of Reinforced Plastics and Composites 21(12) (2002) 1101.

    Google Scholar 

  16. V. A. KAGAN and G. P. PINHO, Journal of Reinforced Plastics and Composites 23(1) (2004) 95.

    Google Scholar 

  17. P. A. HILTON, I. A. JONES and Y. KENNISH, IN PROCEEDINGS OF SPIE—THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING (2002) VOL. 4831, P. 44.

    Google Scholar 

  18. I. BAUER, U. A. RUSSEK, H. HERFURTH, R. WITTE, S. HEINEMANN, G. NEWAZ, A. MIAN, D. GEORGIEV, and G. AUNER, IN PROCEEDINGS OF SPIE—PHOTONICS WEST LASE 2004: LASERS and APPLICATIONS IN SCIENCE and ENGINEERING CONFERENCE, (SAN JOSE, CALIFORNIA, 24–29 JANUARY 2004).

  19. M. LU, Z. QIAN, W. REN, S. LIU and D. SHANGGUAN, Intern. J. Solids Struct. 36(1) (1999) 65.

    Google Scholar 

  20. ABAQUS USER’S MANUAL, VERSION 6.2, HIBBIT, KARLSSON and SORENSEN, USA.

  21. C. YANG and S. PANG, J. Engng Mater. Techn. 118 (1996) 247.

    Google Scholar 

  22. D. G. GEORGIEV, R. J. BAIRD, G. NEWAZ, G. AUNER, R. WITTE and H. HERFURTH, Applied Surface Science 236(1) (2004) 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Newaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mian, A., Newaz, G., Vendra, L. et al. Laser bonded microjoints between titanium and polyimide for applications in medical implants. J Mater Sci: Mater Med 16, 229–237 (2005). https://doi.org/10.1007/s10856-005-6684-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-6684-1

Keywords

Navigation