Skip to main content
Log in

Regulation of Fe2+ contents in yttrium iron garnet by doping with different valence states of Mn and its dielectric and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The regulation of Fe2+ in yttrium iron garnet is a crucial factor in determining its dielectric and magnetic properties. This study successfully prepared Y3Mn0.2Fe4.8O12 ceramics, and studied their microstructure, magnetism, dielectric properties, and ferromagnetic linewidth through Mnn+ ion doping. The microstructural analysis revealed that the doping of low-valence Mn led to an increase in the grain size and density of ceramics, while the Mn4+–YIG showed the emergence of the second phase of YFeO3. Chemical composition analysis confirmed that the Fe2+ content was regulated by the Mn valence and that the lowest value was observed in Mn2+–YIG. The hysteresis loop demonstrated that the saturation magnetization decreased with the increase of Mn valence. In addition, low-valence Mn doping also reduced the dielectric loss and ferromagnetic resonance linewidth. Therefore, this study confirmed that low-valence metal doping could be a promising approach for regulating the Fe2+ content in YIG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. See https://www.digitaltrends.com/mobile/what-is-5g/for some background information acquired from C. de Looper, “What is 5G? The Next-Generation Network Explained, Digital Trends” (last retrieved May 25, 2021).

  2. S.J. Zhang, B. Cheng, Z.G. Gao, D. Lan, Z.W. Zhao, F.C. Wei, Q.S. Zhu, X.P. Lu, G.L. Wu, Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects. J. Alloy. Compd. 893, 162343 (2022)

    Article  CAS  Google Scholar 

  3. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Progr. Mater. Sci. 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  4. V.G. Harris, Modern microwave ferrites. IEEE Trans. Magn. 48, 1075–1104 (2012)

    Article  CAS  Google Scholar 

  5. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, W. Mingzhong, A. Yang, Z. Chen, P. He, P.V. Parimi, Xu. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  CAS  Google Scholar 

  6. V.G. Harris, Ba-hexaferrite films for next generation microwave devices. J. Appl. Phys. 99, 08M911 (2006)

    Article  Google Scholar 

  7. V.G. Harris, A.S. Sokolov, The self-biased circulator: ferrite materials design and process considerations. J. Supercond. Novel Magn. 32, 97–108 (2019)

    Article  CAS  Google Scholar 

  8. C. Yu, P. Andalib, A. Sokolov et al., Interface-engineered barium magnetoplumbite-wide-bandgap semiconductor integration enabling 5G system-on-wafer solutions for full-duplexing phased arrays. Appl. Phys. Lett. 5, 119 (2021)

    Google Scholar 

  9. E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, P.B.A. Fechine, Yttrium iron garnet: properties and applications review. Solid State Phenom. 202, 65–96 (2013)

    Article  Google Scholar 

  10. H.C. Cao, H. Zheng, L.N. Fan, Z.F. Cheng, J.W. Zhou, Q. Wu, P. Zheng, L. Zheng, Y. Zhang, Structural, morphological, dielectric and magnetic properties of Zn–Zr co-doping yttrium iron garnet. Int. J. Appl. Ceram. Technol. 17(2), 813–822 (2020)

    Article  CAS  Google Scholar 

  11. J. Li, Y. Sun, F. Gao, X. Han, Z. Liang, H. Zhang, Q. Li, Enhanced FMR linewidth and magnetic properties of In3+-doped YIG ferrite materials for microwave devices applications. J. Magn. Magn. Mater. 538, 168318 (2021)

    Article  CAS  Google Scholar 

  12. J. Wang, Y. Jin, J. Yang, T. Qiu, Effect of manganese addition on the microstructure and electromagnetic properties of YIG. J. Rare Earths 29(6), 562 (2011)

    Article  CAS  Google Scholar 

  13. X.R. Ji, K. Zhou, Y. Zhao, M.L. Sun, S.J. Dong, H.B. Zhang, H.C. Cao, H. Zheng, Q. Wu, Y. Zhang, Crystal structure, magnetic, dielectric and ferromagnetic resonance properties of Pr–Zn–Zr Co-doped yttrium iron garnet. J. Electron. Mater. 51, 1180–1188 (2022)

    Article  CAS  Google Scholar 

  14. R.P. Garcia, Y. Guerra, D.M. Buitrago, L.R.F. Leal, F.E.P. Santos, E.P. Hernández, Synthesis and characterization of yttrium iron garnet nanoparticles doped with cobalt. Ceram. Int. 44, 11314 (2018)

    Article  Google Scholar 

  15. E. Baños-López, C.A. Cortés-Escobedo, F. Sánchez-De Jesús, A. Barba-Pingarrón, A.M. Bolarín-Miró, Crystal structure and magnetic properties of cerium-doped YIG: effect of doping concentration and annealing temperature. J. Alloy. Compd. 730, 127 (2018)

    Article  Google Scholar 

  16. F.W. Aldbea, N.B. Ibrahim, M. Yahya, Effect of adding aluminum ion on the structural, optical, electrical and magnetic properties of terbium doped yttrium iron garnet nanoparticles films prepared by sol-gel method. Appl. Surf. Sci. 321, 150–157 (2014)

    Article  CAS  Google Scholar 

  17. R. Peña-Garcia, A. Delgado, Y. Guerra, B.V.M. Farias, D. Martinze, E. Skovroinski, A. Galembeck, E. Padrón-Hernández, Magnetic and structural properties of Zn-doped yttrium iron garnet nanoparticles. Phys. Status Solidi A 213, 2485–2491 (2016)

    Article  Google Scholar 

  18. S. Khanra, A. Bhaumik, Y.D. Kolekar, P. Kahol, K. Ghosh, Structural and magnetic studies of Y3Fe5-5xMo5xO12. J. Magn. Magn. Mater. 369, 14–22 (2014)

    Article  CAS  Google Scholar 

  19. K. Bouziane, A. Yousif, H.M. Widatallah, J. Amighian, Site occupancy and magnetic study of Al3+ and Cr3+ co-substituted Y3Fe5O12. J. Magn. Magn. Mater. 320, 2330–2334 (2008)

    Article  CAS  Google Scholar 

  20. C.C. Huang, C.C. Mo, Y.H. Hung, W.Z. Zuo, J.Y. Huang, H.H. Hsu, C.H. Cheng, Effect of particle size of as-milled powders on microstructural and magnetic properties of Y3MnxAl0.8xFe4.2O12 ferrites. J. Am. Ceram. Soc. 102, 3525–3534 (2019)

    Article  Google Scholar 

  21. Z.Z. Zhang, H.L. Lv, Z.K. Feng, Y. Nie, Study on the magnetically tunable filters based on Mnn+ and Al3+ co-doped YIG ferrite. IEEE Trans. Magn. 51, 2802704 (2015)

    Article  Google Scholar 

  22. F. Chen, Q. Li, X. Wang, Z. Feng, Y. Chen, V.G. Harris, Magnetic spectra and richter after effect relaxation in zirconium-doped yttrium iron garnet ferrites. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Google Scholar 

  23. T.C. Mao, J.C. Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic. J. Magn. Magn. Mater. 302(1), 74–81 (2006)

    Article  CAS  Google Scholar 

  24. J.S. Zhu, H.R. Wu, R.X. Ti, F.Z. Huang, Y.M. Jin, Grain size and Fe2+ concentration-dependent magnetic, dielectric, and magnetodielectric properties of Y3Fe5O12 ceramics. Phys. Status Solidi A (2016). https://doi.org/10.1002/pssa.201532582

    Article  Google Scholar 

  25. S.J. Dong, R.Q. Li, J.P. Wu, W.X. Zhong, Y. Zhao, X.R. Ji, H. Zheng, P. Zheng, H. He, L. Zheng, Microstructure and electromagnetic of tantalum substituted W-type hexagonal barium ferrite based on doping concentration. J. Mater. Sci. Mater. Electron. 34, 837 (2023)

    Article  CAS  Google Scholar 

  26. C.Y. Liu, Q.K. Xu, Y. Tang, Z.R. Wang, R. Ma, N. Ma, P.Y. Du, Zr4+ doping-controlled permittivity and permeability of BaFe12xZrxO19 and the extraordinary EM absorption power in the millimeter wavelength frequency range. J. Mater. Chem. C 4, 9532–9543 (2016)

    Article  CAS  Google Scholar 

  27. C.Y. Liu, Y.J. Chen, Y.Y. Yue, Y. Tang, Z.R. Wang, Formation of BaFe12xNbxO19 and its high electromagnetic wave absorption properties in millimeter wave frequency range. J. Am. Chem. Soc. 100, 3999–4010 (2017)

    CAS  Google Scholar 

  28. X.X. Li, J.J. Zhou, J.X. Deng, H. Zheng, L. Zheng, P. Zheng, H.B. Qin, Synthesis of dense, fine-grained YIG ceramics by two-step sintering. J. Electron. Mater. 45(10), 4973–4978 (2016)

    Article  CAS  Google Scholar 

  29. E. Zhou, H. Zheng, L. Zheng, P. Zheng, Z.H. Ying, J.X. Deng, J.J. Zhou, Synthesis of dense, fine-grained hexagonal barium ferrite ceramics by two-step sintering process. Int. J. Appl. Ceram. Technol. 15, 1023–1029 (2018)

    Article  CAS  Google Scholar 

  30. I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. H. Su, X.L. Tang, H.W. Zhang, Y.L. Jing, F.M. Bai, Z.Y. Zhong, J. Appl. Phys. 113, 17B301 (2013)

    Article  Google Scholar 

  32. H.W. Nesbitt, M. Scaini, H. Höchst, G.M. Bancroft, A.G. Schaufuss, R. Szargan, Synchrotron XPS evidence for Fe2+–S and Fe3+–S surface species on pyrite fracture-surfaces, and their 3D electronic states. Am. Miner. 85(5–6), 850–857 (2000)

    Article  CAS  Google Scholar 

  33. W.B. Soltan, S. Nasri, M.S. Lassoued, S. Ammar, Structural, optical properties, impedance spectroscopy studies and electrical conductivity of SnO2 nanoparticles prepared by polyol method. J. Mater. Sci. 28, 6649 (2017)

    Google Scholar 

  34. X.D. Li, Z.N. Chen, L.S. Sheng, L.L. Li, W.F. Bai, F. Wen, P. Zheng, W. Wu, L. Zheng, Y. Zhang, Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics. J. Eur. Ceram. Soc. 39, 2050–2057 (2019)

    Article  CAS  Google Scholar 

  35. Y. Yang, J. Li, J.X. Zhao, X. Chen, G.W. Gan, G. Wang, L.F. He, Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. J. Alloy. Compd. 778, 8 (2019)

    Article  CAS  Google Scholar 

  36. Y.J. Siao, X. Qi, C.R. Lin, J. Huang, Dielectric and magnetic properties of Y3xTbxFe5O12 ferrimagnets. J. Appl. Phys. 111(7), 317 (2012)

    Article  Google Scholar 

  37. H.B. Zhang, L.N. Fan, H.C. Cao, Y.S. Yu, T.C. Zhang, Q.Q. Feng, H. Zheng, Q. Wu, Y. Zhang, Microstructure, magnetic, and dielectric properties of Co–Zr co-doped hexagonal barium ferrites based on the sintering temperature and doping concentration. J. Mater. Sci. 32, 2685–2695 (2021)

    CAS  Google Scholar 

  38. A. Verma, D.C. Dube, Processing of nickel–zinc ferrites via the citrate precursor route for high-frequency applications. J. Am. Ceram. Soc. 88, 519 (2005)

    Article  CAS  Google Scholar 

  39. X.T. Tang, G.T. Wei, T.X. Zhu, L.M. Sheng, K. An, L.M. Yu, Y. Liu, X.L. Zhao, Microwave absorption performance enhanced by high-crystalline graphene and BaFe12O19 nanocomposites. J. Appl. Phys. 119, 204301 (2016)

    Article  Google Scholar 

  40. C.J. Wu, W. Wang, Q. Li, M. Wei, Q. Luo, Y. Fan, X. Jiang, Z. Lan, Z. Jiao, Y. Tian, K. Sun, Z. Yu, Barium hexaferrites with narrow ferrimagnetic resonance linewidth tailored by site-controlled Cu doping. J. Am. Ceram. Soc. 105, 7492–7501 (2022)

    Article  CAS  Google Scholar 

  41. Y.Y. Song, S. Kalarickal, C.E. Patton, Optimized pulsed laser deposited barium ferrite thin films with narrow ferromagnetic resonance linewidths. J. Appl. Phys. 94, 5103–5110 (2003)

    Article  CAS  Google Scholar 

  42. P.E. Seiden, J.G. Grunberg, Ferrimagnetic resonance linewidth in dense polycrystalline ferrites. J. Appl. Phys. 34, 1696 (1963)

    Article  CAS  Google Scholar 

  43. A.V. Nazarov, D. Ménard, J.J. Green, C.E. Patton, G.M. Argentina, Near theoretical microwave loss in hot isostatic pressed (hipped) polycrystalline yttrium iron garnet. J. Appl. Phys. 94, 7227 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. GK239909299001-402), National Key Research and Development Project (Grant No. 2019YFF0217205), Key R&D Program of Zhejiang Province of China (Grant No. 2021C01190).

Funding

Funding was provided by Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. GK239909299001-402), National Key Research and Development Project (Grant No. 2019YFF0217205), Key R&D Program of Zhejiang Province of China (Grant No. 2021C01190).

Author information

Authors and Affiliations

Authors

Contributions

All the authors of the current manuscript contributed equally.

Corresponding author

Correspondence to Hui Zheng.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Chen, K., Nan, Y. et al. Regulation of Fe2+ contents in yttrium iron garnet by doping with different valence states of Mn and its dielectric and magnetic properties. J Mater Sci: Mater Electron 35, 984 (2024). https://doi.org/10.1007/s10854-024-12742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12742-x

Navigation