Skip to main content
Log in

The Self-Biased Circulator: Ferrite Materials Design and Process Considerations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A strategic goal of next-generation transmit and receive modules used in radar and communication platforms is the continued miniaturization of semiconductor based electronics in conjunction with their integration with ferrite control elements, chief among them, the circulator. Here, we address the singular goal of efforts to transform the circulator, in its present form a three dimensional construct, to a two-dimensional device. Key to this transformation is the development of self-biased ferrite materials that are necessary for the breaking of time reversal symmetry and nonreciprocal performance of circulators and isolators. A discussion of efforts to integrate this new two-dimensional device with semiconductor-based active components will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Harris, V.G., Geiler, A., Chen, Y.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035 (2009)

    Article  ADS  Google Scholar 

  2. As described in: Adam, J.D., Davis, L.E., Dionne, G.F., et al.: Ferrite devices and materials. IEEE Trans. On Magn. 50, 721 (2002).

  3. Harris, V.G.: Modern microwave ferrites. IEEE Trans. on Magn. 48, 1075 (2012)

    Article  ADS  Google Scholar 

  4. Anderson, P.W.: Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350 (1950)

    Article  ADS  Google Scholar 

  5. Néel, L.: Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Annales de Physique. 12, 137 (1948)

    Article  ADS  Google Scholar 

  6. Dionne, G.F.: Magnetic Oxides. Springer, New York (2009)

    Book  Google Scholar 

  7. Geiler, A., Daigle, A., Wang, J., et al.: Consequences of magnetic anisotropy in realizing practical microwave hexaferrite devices. J. Magn. Magn. Mater. 324, 3393 (2012)

    Article  ADS  Google Scholar 

  8. Kirchmayr, H.R.: Permanent magnets and hard magnetic materials. J Phys. D: Appl. Phys. 29, 2763 (1996)

    Article  ADS  Google Scholar 

  9. Sui, X., Scherge, M., Kryder, M.H., et al.: Barium ferrite thin-film recording media. J. Mag. Mag. Mater. 155, 132 (1996)

    Article  ADS  Google Scholar 

  10. Koledintseva, M., Ravva, P.C., Drewniak, J.: Engineering of ferrite-graphite composite media for microwave shields. Proc. Int. IEEE Symp. 8, 4244 (2006)

    Google Scholar 

  11. Smit, J. and Wijn, H. P. J.: Ferrites, New York, Wiley, New York, (1959) and references contained within.

  12. Nicholson, D.B.: Hexagonal ferrites for millimeter—wave applications. Hewlett-Packard J. 41, 59 (1990)

    Google Scholar 

  13. Chen, Y., Geiler, A.L., Sakai, T., et al.: Microwave and magnetic properties of self-biased barium hexaferrite screen printed thick films. J. of Appl. Phys. 99, 08M904 (2006a)

    Article  Google Scholar 

  14. Chen, Y., et al.: Screen printed thick self-biased, low-loss, barium hexaferrite films by hot-press sintering. J. Appl. Phys. 100, 043907 (2006b)

    Article  ADS  Google Scholar 

  15. Albanese, G., Deriu, A.: Magnetic properties of Al, Ga, Sc, In substituted barium ferrites: a comparative analysis. Ceramurgia International. 5, 3 (1979)

    Article  Google Scholar 

  16. Li, Z.W., Guo, L., Chen, L., et al.: Co2+Ti4+ substituted Z-type barium ferrite with enhanced imaginary permeability and resonance frequency. J. Appl. Phys. 063905, 99 (2006)

    Google Scholar 

  17. Hu, B., Chen, Y., Su, Z., et al.: Magnetocrystalline anisotropy and FMR linewidth of Zr and Zn-doped Ba-hexaferrite films grown on MgO (111). IEEE Transactions on Magnetics 49, 4234 (2013).

  18. Sugg, B., Vincent, H.: Magnetic properties of new M-type hexaferrites BaFe12-2xIrxCoxO19. J. Magn. Magn. Mater. 364, (1995)

  19. Li, Z.W., Ong, C.K., Yang, Z., et al.: Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles. Physical Review B. 62, 6530 (2000)

    Article  ADS  Google Scholar 

  20. Daigle, A.P., Geiler, M., Geiler, A.L., et al.: Permeability spectra of Co2Z hexaferrite compacts produced via a modified aqueous co-precipitation technique. J. Magn. Magn. Mater. 324, 3719 (2012)

    Article  ADS  Google Scholar 

  21. Su, Z., Chen, Y., Hu, B., et al.: Crystallographically textured self-biased W-type hexaferrites for X-band microwave applications. J. Appl. Phys. 113, 17B305 (2013)

    Article  Google Scholar 

  22. Liu, J., Zeng, Y., Su, Z., et al.: Magnetic properties of a highly textured barium hexa-ferrite quasi-single crystal and its application in low-field biased circulators. Journal of Electronic Materials. 6, 1 (2016)

    Google Scholar 

  23. Chen, Y., Nedoroscik, M.J., Geiler, A.L., et al.: Perpendicularly oriented polycrystalline BaFe11.1Sc0.9O19 hexaferrite with narrow FMR linewidth. J. Am. Ceram. Soc. 91, 2952 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, V.G., Sokolov, A.S. The Self-Biased Circulator: Ferrite Materials Design and Process Considerations. J Supercond Nov Magn 32, 97–108 (2019). https://doi.org/10.1007/s10948-018-4928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4928-9

Keywords

Navigation