Skip to main content
Log in

Annealing of MBE-grown CdTe epitaxial layer at various tellurium overpressure for reduced defect density

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium telluride (CdTe) (211) epitaxial layers were grown on GaAs (211) substrates. These CdTe layers were annealed under tellurium overpressure at different annealing temperatures to optimize conditions for better crystal quality and surface roughness. Tellurium overpressure was calculated using thermodynamical equations and utilized during the growth of the CdTe epitaxial layer by MBE. It was found that crystal quality improved, which manifested in the reduction of XRD peak full width at half maximum (FWHM) from ~ 150 to ~ 70 arcsec, and observation of fivefold reduction in dislocation defect density. Annealing conditions were optimized with a tradeoff between crystal quality and surface roughness. The activation energy of β-dislocations in CdTe epitaxial layers was determined to be Ea = 1.05 ± 0.2 eV. HRXRD FWHM ~ 55 arcsec was obtained for 10-μm thick CdTe buffer layer. The large area (3 in. dia) high crystal quality (HRXRD FWHM ~ 70 arcsec) HgCdTe epitaxial layers were grown on CdTe/ GaAs substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data pertaining to the research will be made available on reasonable request.

References

  1. B. John, S. Varadharajaperumal, Phys. Met. Metallogr. 124, 1795–1812 (2024)

    Article  Google Scholar 

  2. Y. Eisen, A. Shor, I. Mardor, Nucl. Instrum. Methods Phys. Res. A 428, 158–170 (1999)

    Article  CAS  Google Scholar 

  3. P. Capper, J.W. Garland, Mercury Cadmium Telluride Growth, Properties and Applications (Wiley, West Sussex, 2011)

    Google Scholar 

  4. S. Sen, J.E. Stannard, Mater. Res. Soc. Symp. Proc. 302, 391–401 (1994)

    Article  Google Scholar 

  5. J.H. Dinan, S.B. Qadri, J. Vac. Sci. Technol. A 4, 2158–2161 (1986)

    Article  CAS  Google Scholar 

  6. D. Schikora, H. Hausleitner, S. Einfeldt, C.R. Becker, T. Widmer, C. Giftge, K. Lübke, K. Lischka, M. von Ortenberg, G. Landwehr, J. Cryst. Growth 138, 8–13 (1994)

    Article  CAS  Google Scholar 

  7. T. Seldrum, R. Bommena, L. Samain, J. Dumont, S. Sivananthan, R. Sporken, J. Vac. Sci. Technol. B 26, 1105–1109 (2008)

    Article  CAS  Google Scholar 

  8. M.E. Groenert, J.K. Markunas, J. Electron. Mater. 35, 1287–1292 (2006)

    Article  CAS  Google Scholar 

  9. T.J. de Lyon, S.M. Johnson, C.A. Cockrum, O.K. Wu, W.J. Hamilton, G.S. Kamath, J. Electrochem. Soc. 141, 2888–2893 (1994)

    Article  Google Scholar 

  10. J. Tersoff, Appl. Phys. Lett. 62, 693–695 (1993)

    Article  Google Scholar 

  11. S. Shintri, S. Rao, H. Li, I. Bhat, S. Jha, C. Liu, T. Kuech, W. Palosz, S. Trivedi, F. Semendy, P. Wijewarnasuriya, Y. Chen, Proceedings of SPIE, 2010 (2010), pp. 1–9

  12. Y. Takano, M. Hisaka, N. Fujii, K. Suzuki, K. Kuwahara, S. Fuke, Appl. Phys. Lett. 73, 2917–2919 (1998)

    Article  CAS  Google Scholar 

  13. W.W. Pan, R.J. Gu, Z.K. Zhang, W. Lei, G.A. Umana-Membreno, D.J. Smith, J. Antoszewski, L. Faraone, J. Electron. Mater. 51, 4869–4883 (2022)

    Article  CAS  Google Scholar 

  14. Y.S. Ryu, T.W. Kang, T.W. Kim, J. Mater. Sci. 40, 4699–4702 (2005)

    Article  CAS  Google Scholar 

  15. J.D. Benson, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, P.J. Smith, L.A. Almeida, M. Martinka, M.F. Vilela, U. Lee, J. Electron. Mater. 37, 1231–1236 (2008)

    Article  CAS  Google Scholar 

  16. L. He, L. Chen, Y. Wu, X.L. Fu, Y.Z. Wang, J. Wu, M.F. Yu, J.R. Yang, R.J. Ding, X.N. Hu, Y.J. Li, Q.Y. Zhang, J. Cryst. Growth 301–302, 268–272 (2007)

    Article  Google Scholar 

  17. I. Madni, W. Lei, Y.L. Ren, J. Antoszewski, L. Faraone, Mater. Chem. Phys. 214, 285–290 (2018)

    Article  CAS  Google Scholar 

  18. R.N. Jacobs, C. Nozaki, L.A. Almeida, M. Jaime-Vasquez, C. Lennon, J.K. Markunas, D. Benson, P. Smith, W.F. Zhao, D.J. Smith, C. Billman, J. Arias, J. Pellegrino, J. Electron. Mater. 41, 2707–2713 (2012)

    Article  CAS  Google Scholar 

  19. C.M. Lennon, L.A. Almeida, R.N. Jacobs, J.D. Benson, P.J. Smith, J.K. Markunas, J. Arias, J. Pellegrino, J. Electron. Mater. 42, 3344–3348 (2013)

    Article  CAS  Google Scholar 

  20. S. Farrell, M.V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, D. Benson, K. Harris, J. Electron. Mater. 40, 1727–1732 (2011)

    Article  CAS  Google Scholar 

  21. Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, N. Dhar, J. Cryst. Growth 310, 5303–5307 (2008)

    Article  CAS  Google Scholar 

  22. M.A.H.A. Albo, H.A. Alshamsi, Inorg. Chem. Commun. 157, 1–17 (2023)

    Google Scholar 

  23. J.P. Gailliard, Rev. Phys. Appl. 22, 457–463 (1987)

    Article  CAS  Google Scholar 

  24. R.H. Swell, Investigation of Mercury Cadmium Telluride Heterostructures Grown by Molecular Beam Epitaxy (The University of Western Australia, Perth, 2005)

    Google Scholar 

  25. S.R. Rao, S.S. Shintri, J.K. Markunas, R.N. Jacobs, I.B. Bhat, J. Electron. Mater. 39, 996–1000 (2010)

    Article  CAS  Google Scholar 

  26. Y. Hwang, V.Q. Ngugen, J.S. Choi, S. Park, S. Cho, T.H. Kim, Y. Ha, C.W. Ahn, J. Korean Phys. Soc. 79, 1057–1062 (2021)

    Article  CAS  Google Scholar 

  27. J. Yin, Q. Huang, J. Zhou, J. Appl. Phys. 79, 3714–3717 (1996)

    Article  CAS  Google Scholar 

  28. S.A. Dvoretsky, N.N. Mikhailov, D.G. Ikusov, V.A. Kartashev, A.V. Kolesnikov, I.V. Sabinina, Y.G. Sidorov, V.A. Shvets, The Growth of CdTe Layer on GaAs Substrate by MBE (IntechOpen, London, 2019)

    Google Scholar 

  29. C. Qin, H. Qimin, L. Wu, C. Liu, W. Li, Mater. Res. Express 6 (2019). https://doi.org/10.1088/2053-1591/ab179c

  30. A. Million, N.K. Dhar, J.H. Dinan, J. Cryst. Growth 159, 76–80 (1996)

    Article  CAS  Google Scholar 

  31. W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, J. Electron. Mater. 24, 505–510 (1995)

    Article  CAS  Google Scholar 

  32. J.E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth and Characterization (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  33. J.D. Benson, S. Farrell, G. Brill, Y. Chen, P.S. Wijewarnasuriya, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, L.A. Almeida, A. Stoltz, U. Lee, M.F. Vilela, J. Peterson, S.M. Johnson, D.D. Lofgreen, D. Rhiger, E.A. Patten, P.M. Goetz, J. Electron. Mater. 40, 1847–1853 (2011)

    Article  CAS  Google Scholar 

  34. S.K.M. Yamaguchi, M. Tachikawa, Y. Itoh, M. Sugo, J. Appl. Phys. 68, 4518–4522 (1990)

    Article  CAS  Google Scholar 

  35. T. Sasaki, N. Oda, J. Appl. Phys. 78, 3121–3124 (1995)

    Article  CAS  Google Scholar 

  36. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, M. Sugo, Appl. Phys. Lett. 53, 2293–2295 (1988)

    Article  CAS  Google Scholar 

  37. M. Vaghayenegar, R.N. Jacobs, J.D. Benson, A.J. Stoltz, L.A. Almeida, D.J. Smith, J. Electron. Mater. 46, 5007–5019 (2017)

    Article  CAS  Google Scholar 

  38. S.K. Choi, M. Mihara, T. Ninomiya, Jpn. J. Appl. Phys. 16, 737–745 (1977)

    Article  CAS  Google Scholar 

  39. S.K. Choi, M. Mihara, T. Ninimiya, Jpn. J. Appl. Phys. 17, 329–333 (1978)

    Article  CAS  Google Scholar 

  40. W.A. Harrison, J. Vac. Sci. Technol. A 1, 1672–1673 (1983)

    Article  CAS  Google Scholar 

  41. E. Bakali, Y. Selamet, E. Tarhan, J. Electron. Mater. 47, 4780–4792 (2018)

    Article  CAS  Google Scholar 

  42. N.C. Gilestaylor, R.N. Bicknell, D.K. Blanks, T.H. Myers, J.F. Schetzina, R.N. Bicknell, D.K. Blanks, T.H. Myers, J.F. Schetzina, J. Vac. Sci. Technol. A 76, 76–82 (1985)

    Article  Google Scholar 

  43. Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, 1st Edn. (CRC press, Boca Raton, Florida, U.S., 2007)

Download references

Acknowledgements

The authors thank the Director, Solid State Physics Laboratory for encouraging and consistent support and permission to publish this work. The authors thank Mr. Sanjay Kumar and Satyadhari Yadav for help in MBE experiments and Ms. Monika Kumari and Mrs. Garima for characterization measurements.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Arun Kumar Garg, Shiv Kumar, Sovinder Singh Rana, and Udai Ram Meena contributed in material preparation. Material characterization and data collection were done by Sandeep Dalal and Akhilesh Pandey, and analysis was performed by Anshu Goyal, Puspashree Mishra, Rakesh Pandey, and Rajendra Singh. The first draft of the manuscript was written by Subodh Tyagi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Subodh Tyagi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S., Goyal, A., Rana, S.S. et al. Annealing of MBE-grown CdTe epitaxial layer at various tellurium overpressure for reduced defect density. J Mater Sci: Mater Electron 35, 982 (2024). https://doi.org/10.1007/s10854-024-12724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12724-z

Navigation