Skip to main content
Log in

New ultrafine-flowers compositions based on Mn, Fe and Co multi-doped p-type NiO semiconductor: enhanced ferromagnetic and dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 24 May 2024

This article has been updated

Abstract

In this study, Ni0.97Mn0.01Fe0.01Co0.01O composition exhibits a giant dielectric permittivity and strong ferromagnetic hysteresis loop at ambient temperature. Pure, (Mn, Co) codoped and (Mn, Fe, Co) tri-doped NiO powders were synthesized by sol–gel route. The crystal structure based on X-ray diffraction analysis verified that all samples have a cubic NiO phase with small crystallite sizes within 11–14 nm. The field emission scanning electron microscope (FESEM) image of pure NiO powder reveals the formation of particles have sheets shape. The FESEM micrographs of Ni0.97Mn0.015Co0.015O and Ni0.97Mn0.01Fe0.01Co0.01O powders show a flower-like microstructure with homogenous size and distribution. The flower-like microstructure mostly made up of thin nanosheets particles. The band gap energy (Eg) of NiO, Ni0.97Mn0.015Co0.015O and Ni0.97Mn0.01Fe0.01Co0.01O compositions was estimated to be 3.45, 3 and 2.9 eV, respectively. Both treated NiO compositions have long absorption impurity states until nearly 1.8 eV, indicating a high harvesting capacity for visible light spectrum. Ni0.97Mn0.015Co0.015O and Ni0.97Mn0.01Fe0.01Co0.01O samples reveal giant dielectric permittivity with measured values of 6325 and 27,934 at 42 Hz, respectively. Magnetically, the tri-doping by (Mn, Fe, Co) blend noticeably advance the ferromagnetic performance and multiple the magnetic parameters of NiO with measured saturation magnetization, coercivity and remanence of 3.12 emu/g, 290 Oe and 0.58 emu/g, respectively. The obtained results indicated that the (Mn, Fe, Co) tri-doped NiO semiconductor is a highly promising system for capacitive charge energy storage and spin-electronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data are existing in the essential text.

Change history

References

  1. T.P. Mokoena, H.C. Swart, D.E. Motaung, A review on recent progress of p-type nickel oxide based gas sensors: future perspectives. J. Alloy. Compd. 805, 267–294 (2019)

    Article  CAS  Google Scholar 

  2. B. Wang, Y. Huang, S. Zhao, R. Li, D. Gao, H. Jiang, R. Zhang, Novel self-assembled porous yolk-shell NiO nanospheres with excellent electrochromic performance for smart windows. Particuology 84, 72–80 (2024)

    Article  CAS  Google Scholar 

  3. S. Li, R. Guo, J. Li, Y. Chen, W. Liu, Synthesis of NiO–ZrO2 powders for solid oxide fuel cells. Ceram. Int. 29, 883–886 (2003)

    Article  CAS  Google Scholar 

  4. H. Far, M. Hamici, N. Brihi, K. Haddadi, M. Boudissa, T. Chihi, M. Fatmi, High-performance photocatalytic degradation of NiO nanoparticles embedded on a-Fe2O3 nanoporous layers under visible light irradiation. J. Market. Res. 19, 1944–1960 (2022)

    CAS  Google Scholar 

  5. S.H.S. Pai, S.K. Pandey, E.J.J. Samuel, J.U. Jang, A.K. Nayak, H. Han, Recent advances in NiO-based nanostructures for energy storage device applications. J. Energy Storage 76, 109731 (2024)

    Article  Google Scholar 

  6. M.B.J.G. Freitas, Nickel hydroxide powder for NiO·OH/Ni(OH)2 electrodes of the alkaline batteries. J. Power Sour. 93, 163–173 (2001)

    Article  CAS  Google Scholar 

  7. S. Seo, I.J. Park, M. Kim, S. Lee, C. Bae, H.S. Jung, N.-G. Park, J.Y. Kim, H. Shin, An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 8, 11403–11412 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. G. Nabi, S. Rehman, M.B. Tahir, N. Malik, R. Yousaf, M. Maraj, M. Rizwan, M. Tanveer, Structural, optical, and magnetic properties of pure and vanadium-doped NiO microstructures for spintronics applications. J. Supercond. Novel Magn. 34, 1801–1806 (2021)

    Article  CAS  Google Scholar 

  9. C.C. Aivalioti, E.G. Manidakis, N.T. Pelekanos, M. Androulidaki, K. Tsagaraki, Z. Viskadourakis, E. Spanakis, E. Aperathitis, Niobium-doped NiO as p-type nanostructured layer for transparent photovoltaics. Thin Solid Films 778, 139910 (2023)

    Article  CAS  Google Scholar 

  10. Y. Yang, Y. Liang, Z. Zhang, Y. Zhang, H. Wu, Z. Hu, Morphology well-controlled synthesis of NiO by solvothermal reaction time and their morphology-dependent pseudocapacitive performances. J. Alloy. Compd. 658, 621–628 (2016)

    Article  CAS  Google Scholar 

  11. A.C. Gandhi, H.-H. Chiu, K.-T. Wu, C.-L. Cheng, S.Y. Wu, Surface-spin driven room temperature magnetic memory effect in Fe-substituted NiO nanoparticles. Appl. Surf. Sci. 536, 147856 (2021)

    Article  CAS  Google Scholar 

  12. J. Wu, C.-W. Nan, Y. Lin, Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 89, 217601 (2022)

    Article  Google Scholar 

  13. S.M. Yakout, Spintronics: Future technology for new data storage and communication devices. J. Supercond. Novel Magn. 33, 2557–2580 (2020)

    Article  CAS  Google Scholar 

  14. C. Gómez-Polo, S. Larumbe, J.M. Pastor, Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles. J. Appl. Phys. 113, 17B511 (2013)

    Article  Google Scholar 

  15. L.B. Chandrasekar, K. Gnanasekar, M. Karunakaran, Spintronics—A mini review. Superlattices Microstruct. 136, 106322 (2019)

    Article  CAS  Google Scholar 

  16. Y. Liu, C. Zhai, K. Zhang, L. Du, M. Zhu, M. Zhang, Origin of ferromagnetism in Sm-doped In2S3 nanoparticles: Experimental and theoretical insights. J. Magn. Magn. Mater. 503, 166618 (2020)

    Article  CAS  Google Scholar 

  17. T. Diet, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)

    Article  Google Scholar 

  18. A. Gupta, R. Zhang, P. Kumar, V. Kumar, A. Kumar, Nano-structured dilute magnetic semiconductors for efficient spintronics at room temperature. Magnetochemistry 6, 15 (2020)

    Article  CAS  Google Scholar 

  19. S. Kumar, R. Kumar, R. Kumar, P. Vaibhav, R.K. Singh, N. Kumar, R.K. Singh, S. Sharma, Spin-polarized room temperature ferromagnetism in co-doped ZnO synthesized by electrodeposition. Chinese J. Phys. 73, 622–633 (2021)

    Article  CAS  Google Scholar 

  20. J. Huang, D. Oka, Y. Hirose, M. Negishi, T. Fukumura, A transparent room-temperature ferromagnetic semiconductor on glass: anatase Co-doped TiO2 oriented thin films with improved electrical conduction. CrystEngComm 25, 4907–4913 (2023)

    Article  CAS  Google Scholar 

  21. H. Abbas, K. Nadeem, A. Hassan, S. Rahman, H. Krenn, Enhanced photocatalytic activity of Ferromagnetic Fe-doped NiO nanoparticles. Optik 202, 163637 (2020)

    Article  CAS  Google Scholar 

  22. J. Wang, J. Cai, Y.-H. Lin, C.-W. Nan, Room-temperature ferromagnetism observed in Fe-doped NiO. Appl. Phys. Lett. 87, 202501 (2005)

    Article  Google Scholar 

  23. S. Manna, A.K. Deb, J. Jagannath, S.K. De, Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods. J. Phys. Chem. C 112, 10659–10662 (2008)

    Article  CAS  Google Scholar 

  24. S. Layek, H.C. Verma, Room temperature ferromagnetism in Mn-doped NiO nanoparticles. J. Magn. Magn. Mater. 397, 73–78 (2016)

    Article  CAS  Google Scholar 

  25. K. Noipa, S. Labuayai, E. Swatsitang, S. Maensiri, Room-temperature ferromagnetism in nanocrystalline Fe-doped NiO powders synthesized by a simple direct thermal decomposition method. Electron. Mater. Lett. 10, 147–152 (2014)

    Article  CAS  Google Scholar 

  26. W. Yan, W. Weng, G. Zhang, Z. Sun, Q. Liu, Z. Pan, Y. Guo, P. Xu, S. Wei, Y. Zhang, S. Yan, Structures and magnetic properties of (Fe, Li)-codoped NiO thin films. Appl. Phys. Lett. 92, 052508 (2008)

    Article  Google Scholar 

  27. J. Al Boukhari, A.A. Azab, Z. Bitar, R. Awad, Influence of (Mg, Cu) codoping on the structural, optical and magnetic properties of NiO nanoparticles synthesized by coprecipitation method. Phys. B: Condens. Matter 663, 415004 (2023)

    Article  CAS  Google Scholar 

  28. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Spec. Top. 180, 61–89 (2010)

    Article  Google Scholar 

  29. L. Wang, X. Liu, M. Zhang, X. Bi, Z. Ma, J. Li, J. Chen, X. Sun, Colossal dielectric behavior of (Nb, Ga) co-doped TiO2 single crystal. J. Alloy. Compd. 921, 166053 (2020)

    Article  Google Scholar 

  30. N.T. Taylor, F.H. Davies, S.G. Davies, C.J. Price, S.P. Hepplestone, The fundamental mechanism behind colossal permittivity in oxides. Adv. Mater. 31, 1904746 (2019)

    Article  CAS  Google Scholar 

  31. Y. Wang, W. Jie, C. Yang, X. Wei, J. Hao, Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Funct. Mater. 29, 1808118 (2019)

    Article  Google Scholar 

  32. K. Deshmukh, T. Kovářík, T. Křenek, D. Docheva, T. Stich, J. Pola, Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv. 10, 33782–33835 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by sol-gel method: synthesis and application. Adv. Mater. Sci. Eng. 2021, 5102014 (2021)

    Article  Google Scholar 

  34. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  35. A.M. Abu-Dief, A.A. Essawy, A.K. Diab, W.S. Mohamed, Facile synthesis and characterization of novel Gd2O3–CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination. J. Phys. Chem. Solids 148, 109666 (2021)

    Article  CAS  Google Scholar 

  36. W.S. Mohamed, N.M. Hadia, M. Alzaid, A.M. Abu-Dief, Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sci. 125, 106841 (2022)

    Article  CAS  Google Scholar 

  37. S. Koppala, R. Balan, I. Banerjee, K. Li, L. Xu, H. Liu, D.K. Kumar, K.R. Reddy, V. Sadhu, Room temperature synthesis of novel worm like tin oxide nanoparticles for photocatalytic degradation of organic pollutants. Mater. Sci. Energy Technol. 4, 113–118 (2021)

    CAS  Google Scholar 

  38. X. Gao, G. Huang, H. Gao, C. Pan, H. Wang, J. Yan, Y. Liu, H. Qiu, N. Ma, J. Gao, Facile fabrication of Bi2S3/SnS2 heterojunction photocatalysts with efficient photocatalytic activity under visible light. J. Alloy. Compd. 674, 98–108 (2016)

    Article  CAS  Google Scholar 

  39. U.S.U. Thampy, A. Mahesh, K.S. Sibi, I.N. Jawahar, V. Biju, Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route. SN Applied Sci. 1, 1478 (2019)

    Article  Google Scholar 

  40. S. Pooyandeh, S. Shahidi, A. Khajehnezhad, R. Mongkholrattanasit, In situ deposition of NiO nano particles on cotton fabric using sol-gel method- photocatalytic activation properties. J. Market. Res. 12, 1–14 (2021)

    CAS  Google Scholar 

  41. A. Khatri, P.S. Rana, Visible light assisted photocatalysis of Methylene Blue and Rose Bengal dyes by iron doped NiO nanoparticles prepared via chemical co-precipitation. Phys. B: Phys. Condens. Matter 579, 411905 (2020)

    Article  CAS  Google Scholar 

  42. S. Agrawal, A. Parveen, A. Azam, Microwave assisted synthesis of Co doped NiO nanoparticles and its fluorescence properties. J. Lumin. 184, 250–255 (2017)

    Article  CAS  Google Scholar 

  43. R. Kant, R. Singh, A. Bansal, A. Kumar, Effect of Mn-adding on microstructure, optical and dielectric properties Zn0.95Al0.05O nanoparticles. Phys. E: Low-Dimens. Syst. Nanostruct. 131, 114726 (2021)

    Article  CAS  Google Scholar 

  44. H. Saadi, Z. Benzarti, P. Sanguino, J. Pina, N. Abdelmoula, J.S.S. de Melo, Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 34, 116 (2023)

    Article  CAS  Google Scholar 

  45. H. Saadi, Z. Benzarti, F.I.H. Rhouma, P. Sanguino, S. Guermazi, K. Khirouni, M.T. Vieira, Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci. Mater. Electron. 32, 1536–1556 (2021)

    Article  CAS  Google Scholar 

  46. M.N. Siddique, P. Tripathi, Lattice defects formulated ferromagnetism in nonmagnetic La (III) ion doped NiO nanostructures: Role of oxygen vacancy. J. Alloy. Compd. 825, 154071 (2020)

    Article  CAS  Google Scholar 

  47. R. Kant, R. Singh, A. Bansal, A. Kumar, Effect of Mn-adding on microstructure, optical and dielectric propzerties Zn0.95Al0.05O nanoparticles. Phys. E: Low-Dimens. Syst. Nanostruct. 131, 114726 (2021)

    Article  CAS  Google Scholar 

  48. P. Ravikumar, B. Kisan, A. Perumal, Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Adv. 5, 087116 (2015)

    Article  Google Scholar 

  49. Z.-Y. Chen, Y. Chen, Q.K. Zhang, X.Q. Tang, D.D. Wang, Z.Q. Chen, P. Mascher, S.J. Wang, Vacancy-induced ferromagnetic behavior in antiferromagnetic NiO nanoparticles: a positron annihilation study. ECS J. Solid State Sci. Technol. 6, P798–P804 (2017)

    Article  CAS  Google Scholar 

  50. G. Bharathy, P. Raji, Pseudocapacitance of Co doped NiO nanoparticles and its room temperature ferromagnetic behavior. Phys. B: Phys. Condens. Matter 530, 75–81 (2018)

    Article  CAS  Google Scholar 

  51. B. Gokul, P. Saravanan, V.T.P. Vinod, M. Černík, R. Sathyamoorthy, A study on the origin of room temperature ferromagnetism in Ni1-xGdxO nanoparticles. J. Magn. Magn. Mater. 394, 179–184 (2015)

    Article  CAS  Google Scholar 

  52. J. Al Boukhari, Z. Bitar, A.A. Azab, R. Awad, Structural, optical and magnetic properties of Ni1–2xMgxRuxO nanoparticles. Phys. Scr. 98, 075934 (2023)

    Article  Google Scholar 

  53. B. Choudhury, R. Verma, A. Choudhury, Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv. 4, 29314–29323 (2014)

    Article  CAS  Google Scholar 

  54. L.S. Nair, D. Chandran, V.M. Anandakumar, K.R. Babu, Structure and room-temperature ferromagnetism evolution of Sn and Mn-doped NiO synthesized by a sol-gel process. Ceram. Int. 43, 11090–11096 (2017)

    Article  CAS  Google Scholar 

  55. P. Kathiravan, K. Thillaivelavan, G. Viruthagiri, Influence of Cu-ion doping in NiO NPs and their structural, morphological, optical and magnetic behaviors for optoelectronic devices and magnetic applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 308, 123745 (2024)

    Article  CAS  Google Scholar 

  56. M. Subash, M. Chandrasekar, C. Inmozhi, G. Gobi, M.E.R. Saravanan, R. Uthrakumar, Synthesis, structural and magnetic properties of pure and Li2+ doped NiO nanomaterial. Mater. Today: Procee. 56, 3409–3412 (2022)

    CAS  Google Scholar 

  57. M.M. Shah, M. Fatema, D.A. Ansari, D.K. Gupta, M.D. Rather, Tuning the structural, magnetic, and electrochemical properties of Mo-doped NiO nanostructures prepared by coprecipitation method. Inorg. Chem. Commun. 151, 110641 (2023)

    Article  CAS  Google Scholar 

  58. R. Krishnakanth, G. Jayakumar, A.A. Irudayaraj, A.D. Raj, Structural and magnetic properties of NiO and Fe-doped NiO nanoparticles synthesized by chemical co-precipitation method. Mater. Today: Procee. 3, 1370–1377 (2016)

    Google Scholar 

  59. M.N. Siddique, A. Ahmed, S.K. Riyajuddin, M. Faizan, K. Ghosh, P. Tripathi, Exploring the Ce3+ ions doping effect on optical and magnetic properties of NiO nanostructures. J. Magn. Magn. Mater. 500, 166323 (2020)

    Article  Google Scholar 

  60. M.A. Rahman, R. Radhakrishnan, R. Gopalakrishnan, Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J. Alloy. Compd. 742, 421–429 (2018)

    Article  Google Scholar 

  61. G. Bharathy, P. Raji, Room temperature ferromagnetic behavior of Mn doped NiO nanoparticles: a suitable electrode material for supercapacitors. J. Mater. Sci. Mater. Electron. 28, 17889–17895 (2017)

    Article  CAS  Google Scholar 

  62. E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A.M. Ahmed, The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic properties. Mater. Res. Bull. 107, 492–497 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out by Dr. Shar A. Alsherari.

Corresponding author

Correspondence to Shar A. Alsherari.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsherari, S.A. New ultrafine-flowers compositions based on Mn, Fe and Co multi-doped p-type NiO semiconductor: enhanced ferromagnetic and dielectric properties. J Mater Sci: Mater Electron 35, 983 (2024). https://doi.org/10.1007/s10854-024-12718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12718-x

Navigation