Skip to main content
Log in

Influence of power and duration on RF sputtering for the formation of terbium oxide passivation layers via the argon ambient

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we have successfully used radio-frequency (RF) sputtering to sputter the Tb4O7 passivation layers on silicon (Si) substrates. The impact of different RF powers and durations on structural, morphological, compositional, and optical characteristics was investigated via different characterization systems. The grazing incidence X-ray diffraction (GIXRD) analysis has verified the formation of all the studied samples (A, B, C, and D) sputtered at A (80 W/30 min and then raised to 100 W/15 min), B (80 W/30 min and then raised to 100 W/35 min), C (80 W/30 min and then raised to 100 W/55 min), and D (100 W/45 min), respectively. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to analyze the surface morphology of the investigated samples. Sample (C) exhibited larger grain sizes and higher surface roughness of 2.33 nm. The band gap energy (ED) values were evaluated by applying the Kubelka–Munk (KM) approach for all the studied samples, and the obtained values were within a range between 2.29 and 2.53 eV. Previous research has shown that the Tb4O7 thin film sputtered on a Si substrate for 45 min using the RF power (110 W) and annealed for 900 °C in argon (Ar) ambient resulted in the formation of crystalline Tb4O7 phase without clear explanation. This motivated us to conduct this study to observe the influence of different RF power and durations as well as determine the best RF power for the formation of the best Tb4O7 passivation layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. W. Ahmad, Y. Gong, G. Abbas, K. Khan, M. Khan, G. Ali, A. Shuja, A.K. Tareen, Q. Khan, D. Li, Nanoscale 13, 5162–5186 (2021). https://doi.org/10.1039/d0nr07548e

    Article  CAS  PubMed  Google Scholar 

  2. B.S. Eller, J. Yang, R.J. Nemanich, J. Vac. Sci. Technol. A 31, 050807 (2013). https://doi.org/10.1116/1.4807904

    Article  CAS  Google Scholar 

  3. A. Ren, H. Wang, W. Zhang, J. Wu, Z. Wang, R.V. Penty, I.H. White, Nat. Electron. 4, 559 (2021). https://doi.org/10.1038/s41928-021-00624-7

    Article  Google Scholar 

  4. A.D. Terna, E.E. Elemike, J.I. Mbonu, O.E. Osafile, R.O. Ezeani, Mater. Sci. Eng. B 272, 115363 (2021). https://doi.org/10.1016/j.mseb.2021.115363

    Article  CAS  Google Scholar 

  5. W. Ahmad, S. Ahmed, M. Amjad, S. Akhtar, M. Ali, Optik (Stuttg). 155, 297–300 (2018). https://doi.org/10.1016/j.ijleo.2017.11.023

    Article  CAS  Google Scholar 

  6. J. Ibarra Michel, J. Dréon, M. Boccard, J. Bullock, B. Macco, Prog. Photovolt. Res. Appl. 31, 380 (2023). https://doi.org/10.1002/pip.3552

    Article  CAS  Google Scholar 

  7. M. Nehra, N. Dilbaghi, G. Marrazza, A. Kaushik, R. Abolhassani, Y.K. Misha, K.H. Kim, S. Kumar, Nano Energy 76, 104991 (2020). https://doi.org/10.1016/j.nanoen.2020.104991

    Article  CAS  Google Scholar 

  8. A. Letellier, M.R. Dubois, J.P. Trovao, H. Maher, Proc. Jpn. Acad. Ser. B 978, 4673–7637 (2015). https://doi.org/10.1109/VPPC.2015.7352955

    Article  Google Scholar 

  9. H. Matsunami, Proc. Jpn. Acad. Ser. B 96, 235–254 (2020). https://doi.org/10.2183/PJAB.96.018

    Article  CAS  Google Scholar 

  10. S. Zhou, X. Zhao, P. Du, Z. Zhang, X. Liu, S. Liu, L.J. Guo, Nanoscale 14, 4887–4907 (2022). https://doi.org/10.1039/d1nr08221c

    Article  CAS  PubMed  Google Scholar 

  11. A. Kahraman, S.C. Deevi, E. Yilmaz, J. Mater. Sci. 55, 7999–8040 (2020). https://doi.org/10.1007/s10853-020-04531-8

    Article  CAS  Google Scholar 

  12. C. Zhu, C. Lv, M. Jiang, J. Zhou, D. Li, X. Ma, D. Yang, Appl. Phys. Lett. 108, 051113 (2016). https://doi.org/10.1063/1.4941430

    Article  CAS  Google Scholar 

  13. S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Nat. Rev. Mater. 5, 259 (2020). https://doi.org/10.1038/s41578-019-0164-6

    Article  CAS  Google Scholar 

  14. A.H.T. Le, V.A. Dao, D.P. Pham, S. Kim, S. Dutta, C.P.T. Nguyen, Y. Lee, Y. Kim, J. Yi, Sol. Energy Mater. Sol. Cells 192, 36 (2019). https://doi.org/10.1016/j.solmat.2018.12.001

    Article  CAS  Google Scholar 

  15. S. Akin, N. Arora, S.M. Zakeeruddin, M. Grätzel, R.H. Friend, M.I. Dar, Adv. Energy Mater. 10, 1 (2020). https://doi.org/10.1002/aenm.201903090

    Article  CAS  Google Scholar 

  16. S. Gao, Q. Zhou, X. Liu, H. Wang, IEEE Electron Device Lett. 40, 1921 (2019). https://doi.org/10.1109/LED.2019.2945175

    Article  CAS  Google Scholar 

  17. K.R. Tolod, S. Hernández, E.A. Quadrelli, N. Russo, Stud. Surf. Sci. Catal. 178, 65 (2019). https://doi.org/10.1016/B978-0-444-64127-4.00004-5

    Article  CAS  Google Scholar 

  18. R. Liu, Y. Lin, L.Y. Chou, S.W. Sheehan, W. He, F. Zhang, H.J.M. Hou, D. Wang, Angew. Chemie Int. Ed. 50, 499 (2011). https://doi.org/10.1002/anie.201004801

    Article  CAS  Google Scholar 

  19. M.J. Kenney, M. Gong, Y. Li, J.Z. Wu, J. Feng, M. Lanza, H. Dai, Science 342, 836 (2013). https://doi.org/10.1126/science.1241327

    Article  CAS  PubMed  Google Scholar 

  20. T. Wang, Z. Luo, C. Li, J. Gong, Chem. Soc. Rev. 43, 7469 (2014). https://doi.org/10.1039/c3cs60370a

    Article  CAS  PubMed  Google Scholar 

  21. M.I. Hossain, Y. Zakaria, A. Zikri, A. Samara, B. Aissa, F. El-Mellouhi, N.S. Hasan, A. Belaidi, A. Mahmood, S. Mansour, Mater. Technol. 37, 248 (2022). https://doi.org/10.1080/10667857.2020.1830551

    Article  CAS  Google Scholar 

  22. B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T.W. Hamann, J. Am. Chem. Soc. 134, 16693 (2012). https://doi.org/10.1021/ja306427f

    Article  CAS  PubMed  Google Scholar 

  23. A. Tchenka, A. Agdad, M.C. Samba Vall, S.K. Hnawi, A. Narjis, L. Nkhaili, E. Ibnouelghazi, E.E. Chamikh, Adv. Mater. Sci. Eng. 2021, 1 (2021). https://doi.org/10.1155/2021/5556305

    Article  CAS  Google Scholar 

  24. M. Ahmadipour, S.N. Ayub, M.F. Ain, Z.A. Ahmad, Mater. Sci. Semicond. Process. 66, 157 (2017). https://doi.org/10.1016/j.mssp.2017.04.019

    Article  CAS  Google Scholar 

  25. M. Ahmadipour, W.K. Cheah, M.F. Ain, K.V. Rao, Z.A. Ahmad, Mater. Lett. 210, 4 (2018). https://doi.org/10.1016/j.matlet.2017.08.121

    Article  CAS  Google Scholar 

  26. E. Vanhove, A. Tsopéla, L. Bouscayrol, A. Desmoulin, J. Launay, P. Temple-Boyer, Sens. Actuators B 178, 350 (2013). https://doi.org/10.1016/j.snb.2012.12.088

    Article  CAS  Google Scholar 

  27. K.M. Abdul Shekkeer, K.Y. Cheong, H.J. Quah, Int. J. Energy Res. 46, 1 (2022). https://doi.org/10.1002/er.8184

    Article  CAS  Google Scholar 

  28. P. Haslinda, M. Abdul, Z. Hassan, H.J. Quah, Appl. Surf. Sci. 550, 149340 (2021). https://doi.org/10.1016/j.apsusc.2021.149340

    Article  CAS  Google Scholar 

  29. L.K. Ono, S. Liu, Y. Qi, Angew. Chem. Int. Ed. 59, 6676 (2020). https://doi.org/10.1002/anie.201905521

    Article  CAS  Google Scholar 

  30. P.V. Fursikov, M.N. Abdusalyamova, F.A. Makhmudov, E.N. Shairmardanov, I.D. Kovalev, DYu. Kovalev, R.B. Morgunov, O.V. Koplak, A.A. Volodin, I.I. Khodos, Y.M. Shulga, J. Alloys Compd. 657, 163 (2016). https://doi.org/10.1016/j.jallcom.2015.09.274

    Article  CAS  Google Scholar 

  31. Y.F. Jiang, C.Z. Yuan, T.Y. Cheang, A.W. Xu, New J. Chem. 43, 9210 (2019). https://doi.org/10.1039/c9nj01966a

    Article  CAS  Google Scholar 

  32. B.M. Abu-Zied, A.R.N. Mohamed, A.M. Asiri, J. Nanosci. Nanotechnol. 15, 4487 (2015). https://doi.org/10.1166/jnn.2015.9605

    Article  CAS  PubMed  Google Scholar 

  33. C. Liao, Z. Li, Y. Zeng, J. Chen, L. Zhong, L. Wang, J. Rare Earths 35, 1008 (2017). https://doi.org/10.1016/S1002-0721(17)61006-8

    Article  CAS  Google Scholar 

  34. S.Y. Jeong, Y.K. Moon, J.K. Kim, S.W. Park, Y.K. Jo, Y.C. Kang, J.H. Lee, Adv. Funct. Mater. 31, 2007895 (2021). https://doi.org/10.1002/adfm.202007895

    Article  CAS  Google Scholar 

  35. S.V. Belaya, V.V. Bakovets, I.P. Asanov, I.V. Korolkov, V.S. Sulyaeva, Chem. Vap. Depos. 21, 150 (2015). https://doi.org/10.1002/cvde.201507153

    Article  CAS  Google Scholar 

  36. V.R. Panse, G. Rahate, A. Saregar, M. Kaur, A. Dixit, Int. J. Electron. Commun. Syst. 1, 33 (2021). https://doi.org/10.24042/ijecs.v1i1.9334

    Article  Google Scholar 

  37. S. Kitai, O. Maida, T. Kanashima, M. Okuyama, Jpn. J. Appl. Phys. 42, 247 (2003). https://doi.org/10.1143/JJAP.42.247

    Article  CAS  Google Scholar 

  38. S.A. Soliman, B.M. Abu-Zied, Thermochim. Acta 491, 84 (2009). https://doi.org/10.1016/j.tca.2009.03.006

    Article  CAS  Google Scholar 

  39. J. Li, G. Lu, B. Xie, Y. Wang, Y. Guo, Y. Guo, J. Rare Earths 30, 1096 (2012). https://doi.org/10.1016/S1002-0721(12)60186-0

    Article  CAS  Google Scholar 

  40. D. Lonappan, N.V. Chandra Shekar, P.C. Sahu, J. Kumar, R. Paul, P. Paul, J. Alloys Compd. 490, 47 (2010). https://doi.org/10.1016/j.jallcom.2009.10.068

    Article  CAS  Google Scholar 

  41. C.J. Lee, A. Sayal, S. Vashishtha, J.F. Weaver, Phys. Chem. Chem. Phys. 22, 379 (2019). https://doi.org/10.1039/c9cp05083c

    Article  CAS  PubMed  Google Scholar 

  42. W. Cartas, R. Rai, A. Sathe, A. Schaefer, J.F. Weaver, J. Phys. Chem. C 118, 20916 (2014). https://doi.org/10.1021/jp505310y

    Article  CAS  Google Scholar 

  43. S.V. Belaya, V.V. Bakovets, A.I. Boronin, S.V. Koshcheev, M.N. Lobzareva, I.V. Korolkov, P.A. Stabnikov, Inorg. Mater. 50, 410 (2014). https://doi.org/10.1134/S0020168514040037

    Article  CAS  Google Scholar 

  44. C. Zhao, L. Zhao, J. Liu, Z. Liu, Y. Chen, Opt. Quantum Electron. 53, 1–12 (2021). https://doi.org/10.1007/s11082-020-02639-4

    Article  CAS  Google Scholar 

  45. E. Márquez, E. Saugar, J.M. Díaz, C.G. Vázquez, S.M.F. Ruano, E. Blanco, J.J.R. Pérez, D.A. Minkov, J. Non Cryst. Solids 517, 32–43 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.04.034

    Article  CAS  Google Scholar 

  46. M. Al-Mansoori, S. Al-Shaibani, A. Al-Jaeedi, J. Lee, D. Choi, F.S. Hasoon, AIP Adv. 7, 125105 (2017). https://doi.org/10.1063/1.5001883

    Article  CAS  Google Scholar 

  47. G.T. West, P.J. Kelly, Surf. Coatings Technol. 206, 1648–1652 (2011). https://doi.org/10.1016/j.surfcoat.2011.08.025

    Article  CAS  Google Scholar 

  48. M. Balci, B. Saatci, M. Ari, Physica B 673, 415487 (2024). https://doi.org/10.1016/j.physb.2023.415487

    Article  CAS  Google Scholar 

  49. D. Hao, J. Chena, G. Ao, Y. Tian, Y. Tang, X. Yi, S. Zhou, Opt. Mater. 94, 47 (2019). https://doi.org/10.1016/j.optmat.2019.05.036

    Article  CAS  Google Scholar 

  50. İ Ermiş, S.P.S. Shaikh, Ceram. Int. 44, 18776–18782 (2018). https://doi.org/10.1016/j.ceramint.2018.07.109

    Article  CAS  Google Scholar 

  51. P.C. Chen, X.A. Wang, Mater. Sci. Appl. 11, 305 (2020). https://doi.org/10.4236/msa.2020.115021

    Article  CAS  Google Scholar 

  52. S. Li, Y. Meng, B. Zhang, Z. Cheng, Y. Li, X. Zhao, Mater. Sci. Eng. 892, 012008 (2020). https://doi.org/10.1088/1757-899X/892/1/012008

    Article  CAS  Google Scholar 

  53. Y. Zhang, J. Deng, H. Zhang, Y. Liu, H. Dai, Catal. Today 245, 28 (2015). https://doi.org/10.1016/j.cattod.2014.09.017

    Article  CAS  Google Scholar 

  54. R.B. Tokas, S. Jena, J.S. Misal, K.D. Rao, S.R. Polaki, C. Pratap, D.V. Udupa, S. Thakur, S. Kumar, N.K. Sahoo, Thin Solid Films 645, 290 (2018). https://doi.org/10.1016/j.tsf.2017.11.007

    Article  CAS  Google Scholar 

  55. R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, G. Ravi, J. Mater. Sci. Mater. Electron. 26, 2800 (2015). https://doi.org/10.1007/s10854-015-2761-5

    Article  CAS  Google Scholar 

  56. F. Challali, D. Mendil, T. Touam, T. Chauveau, V. Bockelée, A.G. Sanchez, A. Chelouche, M.P. Besland, Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.105217

    Article  Google Scholar 

  57. S.M. Abed, S.M. Mohammad, Z. Hassan, A. Muhammad, S. Rajamanickam, K. Ali, J. Mater. Sci. Mater. Electron. 33, 26322 (2022). https://doi.org/10.1007/s10854-022-09315-1

    Article  CAS  Google Scholar 

  58. M.S. Hossain, S. Ahmed, RSC Adv. 12, 25096 (2022). https://doi.org/10.1039/d2ra04881g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Tchenka, A. Agdad, M.C. SambaVall, S.K. Hnawi, A. Narjis, L. Nkhaili, E. Ibnouelghazi, E.E. Chamikh, Adv. Mater. Sci. Eng. 2021, 1–14 (2021). https://doi.org/10.1155/2021/5556305

    Article  CAS  Google Scholar 

  60. H.S. Cornejo, L.D.L.S. Valladares, C.H.W. Barnes, N.O. Moreno, A.B. Dominguez, J. Mater. Sci. 31, 21108 (2020). https://doi.org/10.1007/s10854-020-04623-w

    Article  CAS  Google Scholar 

  61. A. El-Shaer, S. Ezzat, M.A. Habib, O.K. Alduaij, T.M. Meaz, S.A. El-Attar, Crystals 13, 788 (2023). https://doi.org/10.3390/cryst13050788

    Article  CAS  Google Scholar 

  62. R. Tadjine, A. Houimi, M.M. Alim, N. Oudini, Thin Solid Films 741, 139013 (2022). https://doi.org/10.1016/j.tsf.2021.139013

    Article  CAS  Google Scholar 

  63. M.A. Islam, S.F. Wa, M. Hatta, H. Misran, M. Akhtaruzzaman, N. Amin, Chin. J. Phys. 67, 170 (2020). https://doi.org/10.1016/j.cjph.2020.06.010

    Article  CAS  Google Scholar 

  64. A.M. Alsaad, A.A. Ahmad, Q.M. Al-Bataineh, A.A.B. Salameh, H.S. Abdullah, I.A. Qattan, Z.M. Albataineh, A.D. Telfah, Materials (Basel). 13, 1737 (2020). https://doi.org/10.3390/ma13071737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. A.A. Akl, A.S. Hassanien, Superlattices Microstruct. 85, 67 (2015). https://doi.org/10.1016/j.spmi.2015.05.011

    Article  CAS  Google Scholar 

  66. C. Wang, B.L. Cheng, S.Y. Wang, H.B. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, Thin Solid Films 485, 82–89 (2005). https://doi.org/10.1016/j.tsf.2005.03.055

    Article  CAS  Google Scholar 

  67. L.R. Nivedita, A. Haubert, A.K. Battu, C.V. Ramana, Nanomaterials 10, 1–24 (2020). https://doi.org/10.3390/nano10071287

    Article  CAS  Google Scholar 

  68. M. Fukuhara, Phys. Lett. Sect. A 313, 427–430 (2003). https://doi.org/10.1016/S0375-9601(03)00793-X

    Article  CAS  Google Scholar 

  69. G. Iyer, D. De, A. Kumar, R. Pala, A. Subramaniam, Appl. Surf. Sci. 371, 343–348 (2016). https://doi.org/10.1016/j.apsusc.2016.02.201

    Article  CAS  Google Scholar 

  70. W.H. Qi, M.P. Wang, J. Nanoparticle Res. 7, 51–57 (2005). https://doi.org/10.1007/s11051-004-7771-9

    Article  CAS  Google Scholar 

  71. P. Veber, M. Velázquez, G. Gadret, D. Rytz, M. Peltz, R. Decourt, Cryst. Eng. Commun. 17, 492 (2015). https://doi.org/10.1039/c4ce02006e

    Article  CAS  Google Scholar 

  72. S. Machida, K.I. Katsumata, A. Yasumori, RSC Adv. 12, 15435–15439 (2022). https://doi.org/10.1039/d2ra02199d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. J. Gubicza, Eur. Phys. J. Spec. Top. 231, 4153 (2022). https://doi.org/10.1140/epjs/s11734-022-00572-z

    Article  CAS  Google Scholar 

  74. J.L. Tian, H.Y. Zhang, G.G. Wang, X.Z. Wang, R. Sun, L. Jin, J.C. Han, Superlattices Microstruct. 83, 719 (2015). https://doi.org/10.1016/j.spmi.2015.03.062

    Article  CAS  Google Scholar 

  75. H. Pan, Y. He, X. Zhang, Materials (Basel) 14, 1 (2021). https://doi.org/10.3390/ma14041012

    Article  CAS  Google Scholar 

  76. S. Elmassi, M. Bousseta, L. Amiri, S. Drissi, A. Abali, L. Nkhaili, A. Narjis, A. Ammar, A. Outzourhit, Physica B 659, 414853 (2023). https://doi.org/10.1016/j.physb.2023.414853

    Article  CAS  Google Scholar 

  77. Z. Ghorannevis, E. Akbarnejad, M. Ghoranneviss, J. Theor. Appl. Phys. 10, 225 (2016). https://doi.org/10.1007/s40094-016-0219-7

    Article  Google Scholar 

  78. W. Zhao, J. Xu, Y. Cai, Y. Han, S. Yang, S. Zhan, D. Wang, Z. Liu, S. Liu, Nano-Micro Lett. 13, 1 (2021). https://doi.org/10.1007/s40820-021-00688-2

    Article  CAS  Google Scholar 

  79. K. Liao, C. Li, L. Xie, Y. Yuan, S. Wang, Z. Cao, L. Ding, F. Hao, Nano-Micro Lett. 12, 156 (2020). https://doi.org/10.1007/s40820-020-00494-2

    Article  CAS  Google Scholar 

  80. H.J. Quah, K.Y. Cheong, J. Exp. Nanosci. 10, 19 (2015). https://doi.org/10.1080/17458080.2013.781689

    Article  CAS  Google Scholar 

  81. M. Balaguer, C.Y. Yoo, H.J.M. Bouwmeester, J.M. Serra, J. Mater. Chem. A 1, 10234 (2013). https://doi.org/10.1039/c3ta11610g

    Article  CAS  Google Scholar 

  82. D. Zeng, Y. Li, Appl. Catal. B 342, 123393 (2024). https://doi.org/10.1016/j.apcatb.2023.123393

    Article  CAS  Google Scholar 

  83. Y. Doubi, B. Hartiti, L. Hicham, S. Fadili, A. Batan, M. Tahri, A. Belfhaili, P. Thevnin, Mater. Today Proc. 30, 823 (2019). https://doi.org/10.1016/j.matpr.2020.04.186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Nano Optoelectronics Research and Technology (INOR) and the Nano Optoelectronics Research and Technology Laboratory (NOR Lab), School of Physics at Universiti Sains Malaysia (USM) for supporting this research and providing the appropriate research environment. Our gratitude also goes to the financial support from the Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme (FRGS) with Project Code (Grant No. FRGS/1/2023/STG07/USM/02/1), USM account code: (Grant No. 203.CINOR.6712149).

Funding

Funding was provided by Ministry of Higher Education, Malaysia (Grant No. FRGS/1/2023/STG07/USM/02/1).

Author information

Authors and Affiliations

Authors

Contributions

Abubakar A. Sifawa: Conceptualization, Methodology, Investigation, Data collection, Software, Writing—original draft. Sabah M. Mohammad: Conceptualization, Methodology, Visualization, Writing—Review & Editing, Validation, Funding, Supervision. A. Muhammad: Methodology, Visualization, Review & Editing, Validation, Supervision. Way Foong Lim: Reviewing. Mundzir Abdullah, Suvindraj Rajamanickam, and Shireen Mohammed Abed: Data collection and useful discussions. Abubakar A. Sifawa, Sabah M. Mohammad, A. Muhammad, Way Foong Lim, Mundzir Abdullah, Suvindraj Rajamanickam, and Shireen Mohammed Abed: We certify that all mentioned authors have read and approved the article and that no additional individuals meet the requirements for authorship but are not listed. We also certify that all of us have authorized the manuscript's authorship order. We realize that the Corresponding Author is the exclusive point of contact for the Editorial Process and is in charge of communicating with the Editors.

Corresponding authors

Correspondence to Abubakar A. Sifawa or Sabah M. Mohammad.

Ethics declarations

Competing interests

The authors confirm that they have no financial or personal ties that could be seen as influencing the work presented in this research.

Ethical approval

There is no ethical approval needed for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sifawa, A.A., Mohammad, S.M., Muhammad, A. et al. Influence of power and duration on RF sputtering for the formation of terbium oxide passivation layers via the argon ambient. J Mater Sci: Mater Electron 35, 945 (2024). https://doi.org/10.1007/s10854-024-12717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12717-y

Navigation