Skip to main content
Log in

Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites: robust agents for effective sensing of ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon dots-Manganese oxide (CDs-MnO2) and Nitrogen-doped carbon dots-MnO2 (NCDs-MnO2) nanocomposites were constructed by a green ultrasonic approach using Jasminum sambac leaves extract as a carbon source and reducing agent. The constructed nanocomposites were characterized by UV–visible spectrophotometry, FTIR, XRD, EDX, and SEM. CDs-MnO2 nanocomposites gave a UV–visible absorbance peak at λmax 223 nm and NCDs-MnO2 nanocomposite showed a peak at λmax 225 nm. FTIR examination revealed that the produced nanocomposites included a variety of functional groups. The size of the nanocomposite was calculated from XRD data i.e. 22.04 nm for CDs-MnO2 while NCDs-MnO2 had an amorphous nature. EDX analysis showed that both nanocomposites have C, O, and Mn while only one nanocomposite has N. SEM investigation revealed that nanocomposites are agglomerated. The spectrophotometric method was used for the sensitive and selective perceiving of Cr(VI) ions using prepared nanocomposites. Different factors were studied to find an optimum environment for sensing Cr (VI) ions i.e. concentration of ions, reaction time, pH, temperature, and effect of interfering species. The calculated limit of detection was 16 μM for CDs-MnO2 and 69 μM for NCDs-MnO2. The results showed that both nanocomposites are good sensors of Cr (VI) ions but NCDs-MnO2 nanocomposites require less harsh conditions for sensing which can be due to the existence of different functional groups and size of the nanocomposite. Real sample analysis was also done by spike recovery method and calculated recovery percentages were found to be 100.01–100.2% for CDs-MnO2 and 99.9–100.01% for NCDs-MnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. T. Riaz, S. Nayyar, T. Shahzadi, M. Zaib, S. Shahid, S. Mansoor, M. Javed, S. Iqbal, M.M. Al-Anazy, E.B. Elkaeed, R.A. Pashameah, E. Alzahrani, A. Farouk, The biogenic synthesis of cobalt monometallic and cobalt-zinc bimetallic nanoparticles using Cymbopogan citratus L. leaf extract and assessment of their activities as efficient dye removal and antioxidant agents. Agronomy 12(10), 2505 (2022)

    Article  CAS  Google Scholar 

  2. T. Riaz, A. Asghar, T. Shahzadi, S. Shahid, S. Mansoor, A. Asghar, M. Javed, S. Iqbal, M.T. Alotaibi, R.A. Althobiti, E. Alzahrani, A. Farouk, M.M. Al-Anazy, E.B. Elkaeed, Green synthesis of ZnO and Co–ZnO using Brassica rapa leave’s extract and their activities as antioxidant agents, efficient adsorbents, and dye removal agents. J. Saudi Chem. Soc. 27, 101716 (2023)

    Article  CAS  Google Scholar 

  3. T. Shahzadi, M. Abid, T. Riaz, M. Zaib, U. Farooq, A.N. Hussain, S. Javed, Kinetic studies of NiO-rGO hybrid nanocomposite for the treatment of organic toxic effluents and oxidative stress. Int. J. Environ. Anal. Chem. (2023). https://doi.org/10.1080/03067319.2023.2293909

    Article  Google Scholar 

  4. H. He, E. Shuang, D. Lu, Y. Hu, C. Yan, H. Shan, C. He, Deciphering size-induced influence of carbon dots on mechanical performance of cement composites. Constr. Build. Mater. 425, 136030 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136030

    Article  CAS  Google Scholar 

  5. H. Shan, R. Zhao, Y. Miao, Z. Wang, H. He, C. He, Effect of carbon dots with different sizes on chloride binding of cement. Constr. Build. Mater. 425, 136103 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136103

    Article  CAS  Google Scholar 

  6. A. Ravindran, M. Elavarasi, T. Prathna, A.M. Raichur, N. Chandrasekaran, A. Mukherjee, Selective colorimetric detection of nanomolar Cr (VI) in aqueous solutions using unmodified silver nanoparticles. Sens. Actuators, B Chem. 166–167, 365–371 (2012). https://doi.org/10.1016/j.snb.2012.02.073

    Article  CAS  Google Scholar 

  7. L. Sun, T. Liang, C. Zhang, J. Chen, The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite. Phys. Fluids 35(3), 32002 (2023). https://doi.org/10.1063/5.0138294

    Article  CAS  Google Scholar 

  8. C. Luo, Z. Tian, B. Yang, L. Zhang, S. Yan, Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem. Eng. J. 234, 256–265 (2013). https://doi.org/10.1016/j.cej.2013.08.084

    Article  CAS  Google Scholar 

  9. Y. Su, Z. Shen, X. Long, C. Chen, L. Qi, X. Chao, Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution. Mater. Sci. Eng.: A 872, 145001 (2023). https://doi.org/10.1016/j.msea.2023.145001

    Article  CAS  Google Scholar 

  10. B. Liu, Y. Peng, Y. Hao, Y. Zhu, S. Chang, S. Zhuang, Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface. PhotoniX 5(1), 10 (2024). https://doi.org/10.1186/s43074-024-00129-4

    Article  Google Scholar 

  11. S. He, X. Lin, H. Liang, F. Xiao, F. Li, C. Liu, P. Fan, S. Yang, Y. Liu, Colorimetric detection of Cr(vi) using silver nanoparticles functionalized with PVP. Anal. Methods 11(45), 5819–5825 (2019). https://doi.org/10.1039/c9ay02010a

    Article  CAS  Google Scholar 

  12. Edison, T. A. (1915). U.S. Patent No. 1,163,329. Washington, DC: U.S. Patent and Trademark Office.

  13. M. Kolahdouz, B. Xu, A.F. Nasiri, M. Fathollahzadeh, M. Manian, H. Aghababa, H.H. Radamson, Carbon-related materials: graphene and carbon nanotubes in semiconductor applications and design. Micromachines 13(8), 1257 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  14. S. Sagbas, N. Sahiner, Carbon dots: preparation, properties, and application. Nanocarbon Compos. (2019). https://doi.org/10.1016/b978-0-08-102509-3.00022-5

    Article  Google Scholar 

  15. C. Yang, W. Deng, H. Liu, S. Ge, M. Yan, Turn-on fluorescence sensor for glutathione in aqueous solutions using carbon dots–MnO2 nanocomposites. Sens. Actuators, B Chem. 216, 286–292 (2015). https://doi.org/10.1016/j.snb.2015.04.055

    Article  CAS  Google Scholar 

  16. S. Afzal, S. Shahid, S. Mansoor, M. Javed, S. Mahmood, S. Iqbal, H.A. Ibrahium, A facile approach for the bio-fabrication of monometallic MnO2 nano-catalyst for enhanced photocatalytic degradation of dyes and drug. Inorg. Chem. Commun. 158, 111715 (2023)

    Article  CAS  Google Scholar 

  17. X. He, Y. Li, C. Yang, L. Lu, Y. Nie, X. Tian, Carbon dots–MnO2 nanocomposites for As(III) detection in groundwater with high sensitivity and selectivity. Anal. Methods 12(46), 5572–5580 (2020). https://doi.org/10.1039/d0ay01846e

    Article  CAS  PubMed  Google Scholar 

  18. J. Xiang, J. Chen, Y. Zheng, P. Li, J. Huang, Z. Chen, Topological design for isotropic metamaterials using anisotropic material microstructures. Eng. Anal. Bound. Elem. 162, 28–44 (2024). https://doi.org/10.1016/j.enganabound.2024.01.025

    Article  Google Scholar 

  19. Y. Hu, L. Zhang, X. Geng, J. Ge, H. Liu, Z. Li, A rapid and sensitive turn-on fluorescent probe for ascorbic acid detection based on carbon dots-MnO2 nanocomposites. Anal. Methods 9(38), 5653–5658 (2017). https://doi.org/10.1039/c7ay01710c

    Article  CAS  Google Scholar 

  20. S. Yallappa, J. Manjanna, B. Dhananjaya, Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 236–243 (2015). https://doi.org/10.1016/j.saa.2014.08.030

    Article  CAS  Google Scholar 

  21. S. Sabharwal, S. Aggarwal, M. Vats, S. Sardana, Preliminary phytochemical investigation and wound healing activity of Jasminum sambac (linn) ait (oleacea leaves). IJPPR 4(3), 146–150 (2012)

    Google Scholar 

  22. A.I. Al-Snafi, Pharmacological and therapeutic effects of Jasminum sambac—a review. Indo Am. J. Pharm. Sci. 5(3), 1766–1778 (2018). https://doi.org/10.5281/zenodo.1210527

    Article  CAS  Google Scholar 

  23. M. Zaib, A. Arshad, S. Khalid, T. Shahzadi, One pot ultrasonic plant mediated green synthesis of carbon dots and their application invisible light induced dye photocatalytic studies: a kinetic approach. Int. J. Environ. Anal. Chem. (2021). https://doi.org/10.1080/03067319.2021.1934463

    Article  Google Scholar 

  24. J. Xu, K. Cui, T. Gong, J. Zhang, Z. Zhai, L. Hou, F.U. Zaman, C. Yuan, Ultrasonic-assisted synthesis of N-doped, multicolor carbon dots toward fluorescent inks, fluorescence sensors, and logic gate operations. Nanomaterials 12(3), 312 (2022). https://doi.org/10.3390/nano12030312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. N.C. Joshi, E. Joshi, A. Singh, Biological synthesis, characterisations and antimicrobial activities of manganese dioxide (MnO2) nanoparticles. Res. J. Pharm. Technol. 13(1), 135 (2020). https://doi.org/10.5958/0974-360x.2020.00027.x

    Article  Google Scholar 

  26. G. Muthusankar, C. Rajkumar, S.M. Chen, R. Karkuzhali, G. Gopu, A. Sangili, N. Sengottuvelan, R. Sankar, Sonochemical driven simple preparation of nitrogen-doped carbon quantum dots/SnO2 nanocomposite: a novel electrocatalyst for sensitive voltammetric determination of riboflavin. Sens. Actuators, B Chem. 281, 602–612 (2019). https://doi.org/10.1016/j.snb.2018.10.145

    Article  CAS  Google Scholar 

  27. G. Qiao, D. Lu, Y. Tang, J. Gao, Q. Wang, Smart choice of carbon dots as a dual-mode onsite nanoplatform for the trace level detection of Cr2O72. Dyes Pigm. 163, 102–110 (2019). https://doi.org/10.1016/j.dyepig.2018.11.049

    Article  CAS  Google Scholar 

  28. M. Zaib, A. Akhtar, F. Maqsood, T. Shahzadi, Green synthesis of carbon dots and their application as photocatalyst in dye degradation studies. Arab. J. Sci. Eng. 46(1), 437–446 (2020). https://doi.org/10.1007/s13369-020-04904-w

    Article  CAS  Google Scholar 

  29. V. Arul, T.N.J.I. Edison, Y.R. Lee, M.G. Sethuraman, Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. J. Photochem. Photobiol., B 168, 142–148 (2017). https://doi.org/10.1016/j.jphotobiol.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  30. Z. Li, Y. Zhang, Q. Niu, M. Mou, Y. Wu, X. Liu, Z. Yan, S. Liao, A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg2+ in water. J. Lumin. 187, 274–280 (2017). https://doi.org/10.1016/j.jlumin.2017.03.023

    Article  CAS  Google Scholar 

  31. V. Ţucureanu, A. Matei, A.M. Avram, FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 46(6), 502–520 (2016). https://doi.org/10.1080/10408347.2016.1157013

    Article  CAS  PubMed  Google Scholar 

  32. F. Qu, H. Pei, R. Kong, S. Zhu, L. Xia, Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165, 136–142 (2017). https://doi.org/10.1016/j.talanta.2016.11.051

    Article  CAS  PubMed  Google Scholar 

  33. A. Maddu, A. Saputra, N.I. Ayuningtiyas, A. Tsalsabila, A. Ismayana, S. Arjo, Synthesis of MnO2/carbon dots nanocomposite derived from rice husk for supercapacitor electrodes. Int. J. Renew. Energy Res. 8(3), 1476 (2018)

    Google Scholar 

  34. H.H. Radamson, A. Hallén, I. Sychugov, A. Azarov, Analytical methods and instruments for micro-and nanomaterials (Springer, Berlin, 2023)

    Book  Google Scholar 

  35. A. Kumar, A.R. Chowdhuri, D. Laha, T.K. Mahto, P. Karmakar, S.K. Sahu, Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens. Actuators, B Chem. 242, 679–686 (2017)

    Article  CAS  Google Scholar 

  36. M. Picard, S. Thakur, M. Misra, A.K. Mohanty, Miscanthus grass-derived carbon dots to selectively detect Fe3+ ions. RSC Adv. 9(15), 8628–8637 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. V. Raveendran, A.R.S. Babu, N.K. Renuka, Mint leaf derived carbon dots for dual analyte detection of Fe (iii) and ascorbic acid. RSC Adv. 9(21), 12070–12077 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. V. Roshni, S. Misra, M.K. Santra, D. Ottoor, One pot green synthesis of C-dots from groundnuts and its application as Cr (VI) sensor and in vitro bioimaging agent. J. Photochem. Photobiol., A 373, 28–36 (2019)

    Article  CAS  Google Scholar 

  39. D. Gu, L. Hong, L. Zhang, H. Liu, S. Shang, Nitrogen and sulfur co-doped highly luminescent carbon dots for sensitive detection of Cd (II) ions and living cell imaging applications. J. Photochem. Photobiol., B 186, 144–151 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Xie, D. Cheng, X. Liu, A. Han, Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+. Sensors 19(14), 3169 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J.R. Bhamore, S. Jha, R.K. Singhal, T.J. Park, S.K. Kailasa, Facile green synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ ion via chelation enhanced fluorescence mechanism. J. Mol. Liq. 264, 9–16 (2018)

    Article  CAS  Google Scholar 

  42. S. Daniel, Carbon dot-based molecular receptor for the colorimetric sensing of Cr(VI) from aqueous solutions. Mater. Sci. Technol. 38(11), 742–752 (2022). https://doi.org/10.1080/02670836.2022.2063500

    Article  CAS  Google Scholar 

  43. S. Sahu, N. Bishoyi, R.K. Patel, Cerium phosphate polypyrrole flower like nanocomposite: a recyclable adsorbent for removal of Cr(VI) by adsorption combined with in-situ chemical reduction. J. Ind. Eng. Chem. 99, 55–67 (2021). https://doi.org/10.1016/j.jiec.2021.03.041

    Article  CAS  Google Scholar 

  44. A. Tytłak, P. Oleszczuk, R. Dobrowolski, Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions. Environ. Sci. Pollut. Res. 22(8), 5985–5994 (2014). https://doi.org/10.1007/s11356-014-3752-4

    Article  CAS  Google Scholar 

  45. B. Wang, Y. Lin, H. Tan, M. Luo, S. Dai, H. Lu, Z. Huang, One-pot synthesis of N-doped carbon dots by pyrolyzing the gel composed of ethanolamine and 1-carboxyethyl-3-methylimidazolium chloride and their selective fluorescent sensing for Cr(VI) ions. Analyst (2018). https://doi.org/10.1039/C8AN00077H

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project Number (RSP2024R242), King Saud University, Riyadh, Saudi Arabia.

Funding

This study was funded by King Saud University, RSP2024R242, Matar Alshalwi.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Ali Bahadur or Shahid Iqbal.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, T., Azam, R., Shahzadi, T. et al. Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites: robust agents for effective sensing of ions. J Mater Sci: Mater Electron 35, 940 (2024). https://doi.org/10.1007/s10854-024-12692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12692-4

Navigation