Skip to main content
Log in

Effect of Sn element on the interfacial reinforced AlN/Cu joint brazed by Ag–Cu–Ti–(Snx) filler

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The AlN substrate is anticipated to fulfill the heat dissipation requirements for SiC power modules, owing to its exceptional thermal conductivity. Nevertheless, the strength and reliability of the AlN/Cu interface join between the substrate and Cu plate is often compromised and requires significant improvement. In this study, reinforced AlN/Cu joins were successfully fabricated by incorporating Sn phase with a low melting point of 232 °C into the Ag–Cu–Ti brazing filler. The XRD and SEM results suggest that the Sn element facilitates the transformation of the AgCu eutectic structure into a soft Ag solid solution buffer layer, which alleviates residual thermal stress, and promotes the extension of the TiN reaction layer along the AlN grain boundary, thereby enhancing joint bonding strength. Furthermore, ultrasonic scanning results reveal that the Sn additive effectively eliminates voids to 0% at the interface due to increased fluidity of the Ag–Cu–Ti–(Snx) filler and also improves the wettability of the modified filler to the AlN ceramic substrate. With a Sn concentration of 0.24 mg/cm2, the peeling strength of the join attains a maximum value of 47.53 N/mm, which is 9.14 N/mm greater than that of the counterpart without Sn additive. Significantly, this study achieves the mitigation of thermal stress and enhanced substrate reliability without the need for additional equipment or process conditions, thus holding great promise for rapid implementation in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Original data are available to the readers on corresponding author’s email request to the corresponding author.

References

  1. M. Miyake, M. Ueno, U. Feldmann et al., IEEE Trans. Electron Devices 60, 622 (2013)

    Article  Google Scholar 

  2. R. Wu, S. N. Agbo, S. Mendy, et al., Microelectron. Reliab. 126 (2021)

  3. P. Pang, X. Tan, Z. Wang, et al., Electrochim Acta 365 (2021)

  4. Z. Heydariyan, R. Monsef, M. Salavati-Niasari, J. Alloy. Compd. 924, 166564 (2022)

    Article  CAS  Google Scholar 

  5. R. Monsef, M. Salavati-Niasari, J. Energy Storage 74, 109395 (2023)

    Article  Google Scholar 

  6. C. Phalakornkule, P. Sukkasem, C. Mutchimsattha, Int. J. Hydrogen Energy 35, 10934 (2010)

    Article  CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir, Z. Salehi, O. Amiri et al., J. Alloy. Compd. 791, 792 (2019)

    Article  CAS  Google Scholar 

  8. Z. Shuai, S. He, Y. Xue, et al., eTransportation 16 (2023)

  9. O. Alavi, W. De Ceuninck, M. Daenen, Microelectron. Reliab. 138 (2022)

  10. S. Zhang, L. Yan, K. Gao et al., Ceram. Int. 45, 14669 (2019)

    Article  CAS  Google Scholar 

  11. X. Wei, H. Xu, J. Zhan et al., Ceram. Int. 44, 18935 (2018)

    Article  CAS  Google Scholar 

  12. X. Hernandez, C. Jimenez, K. Mergia et al., J. Mater. Eng. Perform. 23, 3069 (2014)

    Article  CAS  Google Scholar 

  13. H. Wang, J. Cao, J. Feng, Scripta Mater. 63, 859 (2010)

    Article  CAS  Google Scholar 

  14. Y. Shen, Z. Li, C. Hao et al., J. Eur. Ceram. Soc. 32, 1769 (2012)

    Article  CAS  Google Scholar 

  15. C. Li, L. Zheng, X. Wang et al., Plant Sci. 285, 1 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Z. Sun, L.X. Zhang, Q. Chang et al., J. Mater. Process. Technol. 255, 8 (2018)

    Article  CAS  Google Scholar 

  17. W.-W. Li, B. Chen, H.-P. Xiong et al., J. Mater. Sci. Technol. 35, 2099 (2019)

    Article  CAS  Google Scholar 

  18. F.S. Ong, H. Tobe, E. Sato, J. Mater. Sci. Technol. 139, 79 (2023)

    Article  CAS  Google Scholar 

  19. S. Zhang, L. Yan, K. Gao et al., Ceram. Int. 45, 19098 (2019)

    Article  CAS  Google Scholar 

  20. M.C. Halbig, B.P. Coddington, R. Asthana et al., Ceram. Int. 39, 4151 (2013)

    Article  CAS  Google Scholar 

  21. T. Wang, J. Zhang, C. Liu et al., Ceram. Int. 40, 6881 (2014)

    Article  CAS  Google Scholar 

  22. B. Cui, J.H. Huang, J.H. Xiong et al., Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 562, 203 (2013)

    Article  CAS  Google Scholar 

  23. Y. Wang, W. Wang, Z. Ye, et al., Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 788 (2020)

  24. T. Zaharinie, R. Moshwan, F. Yusof et al., Mater. Des. 54, 375 (2014)

    Article  CAS  Google Scholar 

  25. Z. Zhong, Z. Zhou, C. Ge, J. Mater. Process. Technol. 209, 2662 (2009)

    Article  CAS  Google Scholar 

  26. Q. Zhu, Y. Cai, Z. Liu et al., Ceram. Int. 49, 9779 (2023)

    Article  CAS  Google Scholar 

  27. A.A. Shirzadi, Y. Zhu, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 496, 501 (2008)

    Article  Google Scholar 

  28. J. Lv, Y. Huang, R. Fu et al., J. Eur. Ceram. Soc. 40, 5332 (2020)

    Article  CAS  Google Scholar 

  29. Y. Zhang, J. Zhang, J. Chen, J. Am. Ceram. Soc. 105, 577 (2022)

    Article  CAS  Google Scholar 

  30. C. Lu, C. Zhang, H. Xu, et al., Mater. Charact. 199 (2023)

  31. C.-Y. Su, C.T. Pan, M.-S. Lo, J. Mater. Eng. Perform. 23, 3299 (2014)

    Article  CAS  Google Scholar 

  32. X. He, L. Shi, Y. Guo et al., Mater Charact 106, 404 (2015)

    Article  CAS  Google Scholar 

  33. D. Huang, Z. Tian, W. Cui et al., Ceram. Int. 44, 20556 (2018)

    Article  CAS  Google Scholar 

  34. NCBI, Atomic Radius in the Periodic Table of Elements. (National Center for Biotechnology Information, 2023), https://pubchem.ncbi.nlm.nih.gov/periodic-table/atomic-radius. Accessed 26 August 2023

  35. N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660 (2013)

    Article  CAS  Google Scholar 

  36. H. Teymourinia, M. Salavati-Niasari, O. Amiri et al., J. Mol. Liq. 242, 447 (2017)

    Article  CAS  Google Scholar 

  37. M. Panahi-Kalamuei, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Alloy. Compd. 617, 627 (2014)

    Article  CAS  Google Scholar 

  38. H. Khojasteh, M. Salavati-Niasari, H. Safajou et al., Diam. Relat. Mater. 79, 133 (2017)

    Article  CAS  Google Scholar 

  39. M. Salavati-Niasari, M. Dadkhah, F. Davar, Polyhedron 28, 3005 (2009)

    Article  CAS  Google Scholar 

  40. O. Dezellus, R. Arroyave, S.G. Fries, Int. J. Mater. Res. 102, 286 (2011)

    Article  CAS  Google Scholar 

  41. J.A. Bearden, Rev. Mod. Phys. 39, 78 (1967)

    Article  CAS  Google Scholar 

  42. S. Zhao, J.-F. Li, L. Liu et al., Chin. Phys. B 18, 1917 (2009)

    Article  CAS  Google Scholar 

  43. K.I. Oguchi, M. Kimura, Q. J. Jpn. Weld. Soc. 27, 96 (2009)

    Article  Google Scholar 

  44. R.B. Ross, Metallic materials specification handbook, 4th edn. (Springer, New York, 2013), p.286

    Google Scholar 

  45. R. Yi, C. Chen, C. Shi et al., Ceram. Int. 47, 20807 (2021)

    Article  CAS  Google Scholar 

  46. Y. Cao, H. Xu, J. Zhan et al., J. Ceram. Sci. Technol. 9, 263 (2018)

    Google Scholar 

  47. Y. Cao, H. Xu, J. Zhan et al., J. Mater. Eng. Perform. 27, 3297 (2018)

    Article  CAS  Google Scholar 

  48. I. Toda-Caraballo, P.E. Rivera-Díaz-del-Castillo, Acta Mater. 85, 14 (2015)

    Article  CAS  Google Scholar 

  49. N. Terasaki, T. Ohashi, Y. Nagatomo et al., J. Mater. Sci. Mater. Electron. 30, 6552 (2019)

    Article  CAS  Google Scholar 

  50. T. Kuzumaki, T. Ariga, Y. Miyamoto, ISIJ Int. 30, 1135 (1990)

    Article  CAS  Google Scholar 

  51. S. Zhu, W. Włosiński, J. Mater. Process. Technol. 109, 277 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Eric H. Gao (Texas, USA) for his help with English editing and polishing.

Funding

This work was partly supported by the National Natural Science Foundation of China (Grant No. U1908220).

Author information

Authors and Affiliations

Authors

Contributions

Yuqi Tian: Methodology, Investigation, Data curation, Validation, Visualization, Writing-original draft; Jun Gao: Investigation; Yan Li: Investigation; Jiangjun Chen: Investigation; Youngguan Jung: Resources; Xinglong Dong: Conceptualization, Project administration, Funding acquisition, Writing—review & editing.

Corresponding author

Correspondence to Xinglong Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Gao, J., Li, Y. et al. Effect of Sn element on the interfacial reinforced AlN/Cu joint brazed by Ag–Cu–Ti–(Snx) filler. J Mater Sci: Mater Electron 35, 873 (2024). https://doi.org/10.1007/s10854-024-12646-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12646-w

Navigation