Skip to main content
Log in

Synthesis and microwave absorption properties of AgVO3/Ag2CrO4 heterostructure in the K-band

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A heterostructure based on AgVO3 and Ag2CrO4 was synthetized combining of the coprecipitation method, and the microwave-assisted hydrothermal (MAH) method. The synthetized samples were dispersed in an epoxy matrix to obtain a composite with 50 wt.% additive and 50 wt.% epoxy. To investigate the formation of the desired materials, the structural characterizations performed were the X-ray diffraction technique, applied to confirm the phase formation of each material, and the Raman spectroscopy, to investigate the appearance of the interface between the materials of the heterostructure. The rectangular waveguide based on Nicholson-Ross-Weir model was used to measure the electromagnetic properties, samples of each material that compose the heterostructure were prepared to investigate the influence of the creation of the interface between these materials. Based on the electromagnetic properties measured, complex electric permittivity and complex magnetic permeability, electromagnetic simulations of the reflection loss method were performed in the FEKO software, to explore the potential of these materials as radar absorbing materials (RAM), and in order to verify the integrity of the simulations a comparison of a measured reflection loss and a simulated one, with the same conditions, was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Singh, N. Kapoor, Adv. Biol. (2014). https://doi.org/10.1155/2014/198609

    Article  Google Scholar 

  2. G. Verma, K.P. Ray, IETE Tech. Rev. (2021). https://doi.org/10.1080/02564602.2021.1927865

    Article  Google Scholar 

  3. V.A. da Silva, J.J. Pereira, E.L. Nohara, M.C. Rezende, J. Aerosp. Technol. Manag. 1, 255 (2009). https://doi.org/10.5028/jatm.2009.0102255263

    Article  Google Scholar 

  4. L.C. de Folgueras, M.A. Alves, M.C. Rezende, J. Aerosp. Technol. Manag. 2, 63 (2010). https://doi.org/10.5028/jatm.2010.02016370

    Article  CAS  Google Scholar 

  5. Y. Ge, C. Li, G.I.N. Waterhouse, Z. Zhang, L. Yu, Ceram. Int. 47, 1728 (2021). https://doi.org/10.1016/j.ceramint.2020.08.290

    Article  CAS  Google Scholar 

  6. B. Maruddani, A. Kurniawan, A. Munir, J. ICT Res. Appl. 8, 85 (2014). https://doi.org/10.5614/itbj.ict.res.appl.2014.8.2.1

    Article  Google Scholar 

  7. J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen, H. Raza, H. Wang, G. Zheng, D. Zhang, H. Zhang, J. Mater. 7, 1233 (2021). https://doi.org/10.1016/j.jmat.2021.02.017

    Article  Google Scholar 

  8. M.T. Fabbro, L.P.S. dos Santos, V.M.F. Santos, F.M. de Yamamoto, J.T. Matsushima, M.R. Baldan, J. Eng. Res. (2022). https://doi.org/10.22533/at.ed.317222230015

    Article  Google Scholar 

  9. L. Mai, L. Xu, Q. Gao, C. Han, B. Hu, Y. Pi, Nano Lett. 10, 2604 (2010). https://doi.org/10.1021/nl1013184

    Article  CAS  PubMed  Google Scholar 

  10. G.S. Silva, L. Gracia, M.T. Fabbro, L.P. Serejo Dos Santos, H. Beltrán-Mir, E. Cordoncillo, E. Longo, J. Andrés, Inorg. Chem. 55, 8961 (2016). https://doi.org/10.1021/acs.inorgchem.6b01452

    Article  CAS  PubMed  Google Scholar 

  11. D. Xu, S. Cao, J. Zhang, B. Cheng, J. Yu, Beilstein J. Nanotechnol. 5, 658 (2014). https://doi.org/10.3762/bjnano.5.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A.P.M. de Monteiro, R.D. Holtz, L.C. Fonseca, C.H.Z. Martins, M. de Sousa, L.A.V. de Luna, D.L.S. de Maia, O.L. Alves, Chem. Rec. 18, 973 (2018). https://doi.org/10.1002/tcr.201700086

    Article  CAS  Google Scholar 

  13. F.D. Hardcastlet, I.E. Wachs, Determlnation of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J. Phys. Chem. 95(13), 5031–5041 (1991)

    Article  Google Scholar 

  14. Y.C. Lin, Y.C. Lin, Atomically thin resonant tunnel diodes. Prop. Synth. Two-Dimens. Mater. Heterostruct. (2018). https://doi.org/10.1007/978-3-030-00332-6_7

    Article  Google Scholar 

  15. T. Bavani, J. Madhavan, S. Prasad, M.S. AlSalhi, M. ALJaffreh, S. Vijayanand, Environ. Res. (2021). https://doi.org/10.1016/j.envres.2021.111365

    Article  PubMed  Google Scholar 

  16. R.C. De Oliveira, M. Assis, M.M. Teixeira, M.D.P. Da Silva, M.S. Li, J. Andres, L. Gracia, E. Longo, J. Phys. Chem. C 120, 12254 (2016). https://doi.org/10.1021/acs.jpcc.6b02840

    Article  CAS  Google Scholar 

  17. F. Soofivand, F. Mohandes, M. Salavati-Niasari, Micro Nano Lett. 7, 283 (2012). https://doi.org/10.1049/mnl.2012.0042

    Article  CAS  Google Scholar 

  18. L. Zhu, D. Huang, J. Ma, D. Wu, M. Yang, S. Komarneni, Ceram. Int. 41, 12509 (2015). https://doi.org/10.1016/j.ceramint.2015.05.118

    Article  CAS  Google Scholar 

  19. N. Ida, Engineering Electromagnetics (Springer, Berlin, 2015)

    Book  Google Scholar 

  20. ULABY, Eletromagnetismo Para Engenheiros (Bookman, Porto Alegre, 2007)

    Google Scholar 

  21. S.S. de Pinto, J.P.B. Machado, N.A.S. Gomes, M.C. Rezende, J. Magn. Magn. Mater. 484, 126 (2019). https://doi.org/10.1016/j.jmmm.2019.03.085

    Article  CAS  Google Scholar 

  22. B. Kuta, Z. N. Chen, Institute of Electrical and Electronics Engineers, B. IEEE Asia-Pacific Conference on Antennas and Propagation 4 2015.06.30–07.03 Kuta, and B. APCAP 4 2015.06.30–07.03 Kuta, in (IEEE, 2015)

  23. J. Xue, C. Wu, X. Du, W. Ma, K. Wen, S. Huang, Y. Liu, Y. Liu, G. Zhao, Mater Res. Express (2010). https://doi.org/10.1088/2053-1591/ab8257

    Article  Google Scholar 

  24. X. Huang, H. Yang, Z. Shen, J. Chen, H. Lin, Z. Yu, J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa81af

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following research funding institutions: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) finance code 001, and the Financiadora de Estudos e Projetos (FINEP/ N° 01.16.0076-00). We are grateful to the Altair for the availability of the FEKO software. And the graduate program in Engenharia e Tecnologia Espaciais/Ciência e Tecnologia de Materiais e Sensores (ETE/CMS -INPE).

Funding

The work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001, Felipe de Moraes Yamamoto, Financiadora de Estudos e Projetos, 01.16.0076-00, Maurício Ribeiro Baldan

Author information

Authors and Affiliations

Authors

Contributions

Yamamoto, F. M. contributed toward conceptualization, methodology, formal analysis, investigation, writing—original draft, and visualization. Fabbro, M. T. and Santos, L. P. S. contributed toward methodology and formal analysis. Lopes, B. K. and Gabas, R. A. L. contributed toward investigation of electromagnetic properties. Baldan, M. R., Santos, L. P. S., and Mineiro, S. L. contributed toward conceptualization, methodology, resources, writing – review & editing, and supervision.

Corresponding author

Correspondence to Felipe de Moraes Yamamoto.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 322.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, F.d., Fabbro, M.T., Lopes, B.H.K. et al. Synthesis and microwave absorption properties of AgVO3/Ag2CrO4 heterostructure in the K-band. J Mater Sci: Mater Electron 35, 897 (2024). https://doi.org/10.1007/s10854-024-12625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12625-1

Navigation