Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Vertical integration of 2D vdW materials is predicted to display novel electronic and optical properties absent in their constituent layers [1]. In this chapter the direct synthesis of two unique, atomically thin, multi-junction heterostructures is demonstrated by combining graphene with some important 2D TMDC: MoS2, MoSe2, and WSe2, aiming to achieve “epitaxy-grade” material interfaces. Surprisingly, the realization of MoS2-WSe2-graphene and WSe2-MoSe2-graphene heterostructures leads to resonant tunneling in an atomically thin stack with spectrally narrow, room-temperature negative differential resistance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science. 353, 80 (2016)

    Article  Google Scholar 

  2. Esaki, L.: New phenomenon in narrow Germanium p-n junctions. Phys. Rev. 109, 603–604 (1958)

    Article  ADS  Google Scholar 

  3. Esaki, L., Tsu, R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970)

    Article  Google Scholar 

  4. Mitin, V.V., Kochelap, V., Stroscio, M.A.: Quantum heterostructures: microelectronics and optoelectronics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Chan, H.L., Mohan, S., Mazumder, P., Haddad, G.I.: Compact multiple-valued multiplexers using negative differential resistance devices. IEEE J. Solid-State Circuits. 31, 1151–1156 (1996)

    Article  ADS  Google Scholar 

  6. Bayram, C., Vashaei, Z., Razeghi, M.: AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 96, 042103 (2010)

    Article  ADS  Google Scholar 

  7. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  8. Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 102, 10451–10453 (2005)

    Article  ADS  Google Scholar 

  9. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature. 499, 419–425 (2013)

    Article  Google Scholar 

  10. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., Lou, J.: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 8, 966–971 (2012)

    Google Scholar 

  11. Lee, Y.-H., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  Google Scholar 

  12. Gutiérrez, H.R., et al.: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013)

    Article  ADS  Google Scholar 

  13. Liu, K.-K., et al.: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)

    Article  ADS  Google Scholar 

  14. Zhang, Y., et al.: Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014)

    Article  ADS  Google Scholar 

  15. Ugeda, M.M., et al.: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)

    Article  ADS  Google Scholar 

  16. Terrones, H., López-Urías, F., Terrones, M.: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013)

    Article  ADS  Google Scholar 

  17. Fang, H., et al.: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA. 111, 6198–6202 (2014)

    Article  ADS  Google Scholar 

  18. Haigh, S.J., et al.: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012)

    Article  ADS  Google Scholar 

  19. Rivera, P., et al.: Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015)

    Google Scholar 

  20. Chiu, M.-H., et al.: Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano. 8, 9649–9656 (2014)

    Google Scholar 

  21. Robinson, J.A., et al.: Epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)

    Article  ADS  Google Scholar 

  22. Huang, J.-K., et al.: Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano. 8, 923–930 (2014)

    Article  Google Scholar 

  23. Eichfeld, S.M., et al.: Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano. 9, 2080–2087 (2015)

    Article  Google Scholar 

  24. Su, S.-H., et al.: Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small. 10, 2589–2594 (2014)

    Article  Google Scholar 

  25. Ghosh, R.K., Lin, Y.-C., Robinson, J.A., Datta, S.: Heterojunction resonant tunneling diode at the atomic limit. 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 266–269. IEEE (2015).

    Google Scholar 

  26. Lin, Y.-C., et al.: Direct synthesis of van der Waals solids. ACS Nano. 8, 3715–3723 (2014)

    Article  Google Scholar 

  27. Lin, Y.-C., et al.: Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015)

    Article  Google Scholar 

  28. Lee, G.-H., et al.: Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011)

    Article  ADS  Google Scholar 

  29. Gong, Y., et al.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)

    Google Scholar 

  30. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  31. Chiu, M.-H., et al.: Determination of band alignment in transition metal dichalcogenides heterojunctions (2014)

    Google Scholar 

  32. Yang, W., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)

    Article  ADS  Google Scholar 

  33. Parkinson, B.A., Ohuchi, F.S., Ueno, K., Koma, A.: Periodic lattice distortions as a result of lattice mismatch in epitaxial films of two-dimensional materials. Appl. Phys. Lett. 58, 472–474 (1991)

    Article  ADS  Google Scholar 

  34. Klein, A., Tiefenbacher, S., Eyert, V., Pettenkofer, C., Jaegermann, W.: Electronic band structure of single-crystal and single-layer WS2: influence of interlayer van der Waals interactions. Phys. Rev. B. 64, 205416 (2001)

    Google Scholar 

  35. Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J., Shih, C.-K.: Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014)

    Article  ADS  Google Scholar 

  36. Rawlett, A.M., et al.: Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy. Appl. Phys. Lett. 81, 3043 (2002)

    Article  ADS  Google Scholar 

  37. Georgiou, T., et al.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013)

    Google Scholar 

  38. Smet, J.H., Broekaert, T.P.E., Fonstad, C.G.: Peak-to-valley current ratios as high as 50:1 at room temperature in pseudomorphic In0.53Ga0.47As/AlAs/InAs resonant tunneling diodes. J. Appl. Phys. 71, 2475 (1992)

    Article  ADS  Google Scholar 

  39. Day, D.J., Yang, R.Q., Lu, J., Xu, J.M.: Experimental demonstration of resonant interband tunnel diode with room temperature peak-to-valley current ratio over 100. J. Appl. Phys. 73, 1542–1544 (1993)

    Article  ADS  Google Scholar 

  40. Su, Y.-K., et al.: Well width dependence for novel AlInAsSb/InGaAs double-barrier resonant tunneling diode. Solid State Electron. 46, 1109–1111 (2002)

    Article  ADS  Google Scholar 

  41. Tsai, H.H., Su, Y.K., Lin, H.H., Wang, R.L., Lee, T.L.: P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature. IEEE Electron Device Lett. 15, 357–359 (1994)

    Article  ADS  Google Scholar 

  42. Rommel, S.L., et al.: Epitaxially grown Si resonant interband tunnel diodes exhibiting high current densities. IEEE Electron Device Lett. 20, 329–331 (1999)

    Article  ADS  Google Scholar 

  43. See, P., et al.: High performance Si/Si1-x/Gex resonant tunneling diodes. IEEE Electron Device Lett. 22, 182–184 (2001)

    Google Scholar 

  44. Jin, N., et al.: Diffusion barrier cladding in Si/SiGe resonant interband tunneling diodes and their patterned growth on PMOS source/drain regions. IEEE Trans. Electron Devices. 50, 1876–1884 (2003)

    Article  ADS  Google Scholar 

  45. Britnell, L., et al.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)

    Article  Google Scholar 

  46. Evers, N., et al.: Thin film pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes integrated onto Si substrates. IEEE Electron Device Lett. 17, 443–445 (1996)

    Article  ADS  Google Scholar 

  47. Mishchenko, A., et al.: Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014)

    Article  ADS  Google Scholar 

  48. Roy, T., et al.: Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano. 9, 2071–2079 (2015)

    Google Scholar 

  49. Lee, C.-H., et al.: Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, YC. (2018). Atomically Thin Resonant Tunnel Diodes. In: Properties of Synthetic Two-Dimensional Materials and Heterostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00332-6_7

Download citation

Publish with us

Policies and ethics