Skip to main content
Log in

Electrochemical deposition of Sn-0.7Cu alloy modified with nano-WO3 for high-density mini-LED packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Sn-0.7Cu-WO3 nanomodified solders were electrodeposited from an aqueous acidic plating bath containing various fractions of WO3 nanoparticles (0.1, 0.25, 0.5 wt%) NPs for mini-light emitting diodes (mini-LEDs) packaging. The produced nanomodified solders were characterized for their morphology, microhardness, melting point, and electrical resistivity. Further, the nanomodified solder bumps were used to mount a 1608 mini-LED chip/ENIG (Electroless Nickel Immersion Gold) pad by reflowing at 240 °C in the air. High-temperature aging was done at 125 °C for 144, 256, and 400 h and joint shear tests were performed to examine the interfacial properties and growth kinetics of the soldered mini-LED/Sn-0.7Cu-WO3/ENIG joints. The results indicated the formation of (Ni,Cu)3Sn4 intermetallic compounds (IMCs) across the solder/ ENIG pad joint. The thickness of the IMC layer decreases showing the maximum rate of decrease when the composition is Sn-0.7Cu-0.25WO3. It was concluded that the optimal set of microstructure, melting point, electrical resistivity, and joint shear reliability could be achieved when the nanomodified solder is reinforced with 0.25 wt.% WO3 NPs into Sn-0.7Cu matrix and thus it can be a potential contestant for the upcoming applications in mini-LED packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used in this work is confidential and cannot be shared at this time.

References

  1. H. Nishida, J. Jpn. Inst. Electron. Packag. 22, 596–606 (2019)

    Article  Google Scholar 

  2. A. Sharma, Y.J. Jang, J.B. Kim, J.P. Jung, J. Alloy. Compd. 704, 795–803 (2017)

    Article  CAS  Google Scholar 

  3. Y. Huang, E.L. Hsiang, M.Y. Deng, S.T. Wu, Light Sci. Appl. 9, 105 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H.W. Chen, J.H. Lee, B.Y. Lin, S. Chen, S.T. Wu, Light Sci. Appl. 7, 17168 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Zhang, R. Xu, Q. Kang, X. Zhang, Z.H. Zhang, Micromachines 14(5), 991 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. F. Chen, J. Bian, J. Hu, N. Sun, B. Yang, H. Ling, H. Yu, K. Wang, M. Gai, Y. Ma, Y. Huang, Int. J. Extrem. Manuf. 4, 042005 (2022)

    Article  CAS  Google Scholar 

  7. T. Wu, C.W. Sher, Y. Lin, C.F. Lee, S. Liang, Y. Lu, S.W.H. Chen, W. Guo, H.C. Kuo, Z. Chen, Appl. Sci. 8(9), 1557 (2018)

    Article  Google Scholar 

  8. D. Chen, Y.C. Chen, G. Zeng, D.W. Zhang, H. Lu, Research 6, 0047 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shenzhen Fitech Co., Ltd. https://en.szfitech.com. Accessed 11 Aug 2023

  10. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95–141 (2000)

    Article  Google Scholar 

  11. A. Sharma, B. Ahn, Soldering Surf. Mount Technol. 32(1), 24–32 (2020)

    Article  Google Scholar 

  12. H.Y. Lee, A. Sharma, S.H. Kee, Y.W. Lee, J.T. Moon, J.P. Jung, Electron. Mater. Lett. 10, 997–1004 (2014)

    Article  CAS  Google Scholar 

  13. A. Sharma, S. Das, K. Das, Microelectron. Eng. 170, 59–68 (2017)

    Article  CAS  Google Scholar 

  14. A. Sharma, S. Kumar, D.H. Jung, J.P. Jung, J. Mater. Sci. Mater. Electron. 28, 8116–8129 (2017)

    Article  CAS  Google Scholar 

  15. A. Sharma, S. Das, K. Das, Pulse Electrodeposition of Lead-Free Tin-Based Composites for Microelectronic Packaging, in Electrodeposition of Composite Materials. ed. by A.M.A. Mohamed, T.D. Golden (InTech, Croatia, 2016)

    Google Scholar 

  16. M.B.K. Teja, A. Sharma, S. Das, K. Das, J. Mater. Sci. 57, 8597–8633 (2022)

    Article  Google Scholar 

  17. M.H. Roh, A. Sharma, J.H. Lee, J.P. Jung, Metall. Mater. Trans. A 46, 2051–2062 (2015)

    Article  CAS  Google Scholar 

  18. A. Sharma, D.H. Jung, M.H. Roh, J.P. Jung, Electron. Mater. Lett. 12, 856–863 (2016)

    Article  CAS  Google Scholar 

  19. X. Liu, M. Huang, C.M.L. Wu, L. Wang, J. Mater. Sci. Mater. Electron. 21, 1046–1054 (2010)

    Article  CAS  Google Scholar 

  20. L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990–993 (2010)

    Article  CAS  Google Scholar 

  21. A. Sharma, S. Bhattacharya, S. Das, K. Das, Metall. Mater. Trans. A 44, 5587–5601 (2013)

    Article  CAS  Google Scholar 

  22. A. Sharma, B.G. Baek, J.P. Jung, Mater. Des. 87, 370–379 (2015)

    Article  CAS  Google Scholar 

  23. D.H. Jung, A. Sharma, J.P. Jung, J. Alloys Compd. 743, 300–313 (2018)

    Article  CAS  Google Scholar 

  24. A. Sharma, S. Bhattacharya, S. Das, H.J. Fecht, K. Das, J. Alloys Compd. 574, 609–616 (2013)

    Article  CAS  Google Scholar 

  25. Y.S. Shin, S. Lee, S. Yoo, C.W. Lee, Mechanical and Microstructural Properties of SiC-Mixed Sn-Bi Composite Solder Bumps by Electroplating, in European Microelectronics and Packaging Conference, Rimini, Italy. (IEEE, New York, 2009), pp.1–4

    Google Scholar 

  26. J.W. Park, J.Y. Eom, H. Kwon, Electrochem. Commun. 11(3), 596–598 (2009)

    Article  CAS  Google Scholar 

  27. E.K. Choi, K.Y. Lee, T.S. Oh, J. Phys. Chem. Solids 69, 1403–1406 (2008)

    Article  CAS  Google Scholar 

  28. A. Sharma, K. Das, S. Das, J. Electron. Mater. 46, 5855–5865 (2017)

    Article  CAS  Google Scholar 

  29. S. Bhattacharya, A. Sharma, S. Das, K. Das, Metall. Mater. Trans. A 47A, 1292 (2016)

    Article  Google Scholar 

  30. N. Guglielmi, J. Electrochem. Soc. 119(8), 1009–1012 (1972)

    Article  CAS  Google Scholar 

  31. W. Tang, Y. Hu, S. Huang, Metal. Mater. Int. 18, 177–183 (2012)

    Article  CAS  Google Scholar 

  32. T. Siewert, S. Liu, D. R. Smith, J. C. Madeni, Database for Solder Properties with Emphasis on New Lead-free Solders, Properties of Lead-Free Solders Release 4.0, NIST and Colorado School of Mines, 2002

  33. A.F. Mayadas, M. Shatzkes, Phys. Rev. B 1(4), 1382–1389 (1970)

    Article  Google Scholar 

  34. S.Y. Chang, C.F. Chen, S.J. Lin, T.Z. Kattamis, Acta Mater. 51, 6191–6302 (2003)

    Article  Google Scholar 

  35. P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Alloy. Compd. 478, 458–461 (2009)

    Article  CAS  Google Scholar 

  36. A. Sharma, A.K. Srivastava, K. Lee, B. Ahn, Met. Mater. Int. 25, 1027–1038 (2019)

    Article  CAS  Google Scholar 

  37. A. Sharma, A.K. Srivastava, B. Ahn, Mater. Res. Express 6(5), 056520 (2019)

    Article  CAS  Google Scholar 

  38. J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223–234 (2009)

    Article  CAS  Google Scholar 

  39. A. Sharma, A.K. Srivastava, B. Ahn, Metall. Mater. Trans. A 50, 5384–5394 (2019)

    Article  CAS  Google Scholar 

  40. B. Sharma, M. Kumar, V. Kumar, A. Sharma, ACS Appl. Nano Mater. 5(9), 13626–13636 (2022)

    Article  CAS  Google Scholar 

  41. S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504(1–2), 401–404 (2006)

    Article  CAS  Google Scholar 

  42. Y. Tang, G.Y. Li, Y.C. Pan, Mater. Design 55, 574–582 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This paper was supported by the Korea Institute for Advancement of Technology (KIAT) and a grant funded by the Korean Government (MOTIE) (P0018010, 2024).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS, Methodology: GAL; Formal analysis and investigation: JPJ, Writing—original draft preparation: GAL, AS; Writing—review and editing: AS, JPJ; Funding acquisition: JPJ; Resources: AS, JPJ, Supervision: AS.

Corresponding author

Correspondence to Jae Pil Jung.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 635 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.A., Sharma, A. & Jung, J.P. Electrochemical deposition of Sn-0.7Cu alloy modified with nano-WO3 for high-density mini-LED packaging. J Mater Sci: Mater Electron 35, 953 (2024). https://doi.org/10.1007/s10854-024-12606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12606-4

Navigation